
TU Chemnitz

Faculty of Natural Sciences
Institute of Physics

Bachelor Thesis

In the course of degree in computational science (B.Sc.)

To obtain the academic degree Bachelor of Science

Thema: Untersuchung von Strategien zur Bildklassifikation
auf kleinen Trainingsdatensätzen

Topic: Investigation of strategies for image classification
on small training data sets

Author: Björn Hempel <bjoern@hempel.li>
Matriculation number 025038

Version from: April 11, 2020

First assessor: Prof. Dr. Angela Thränhardt
Second assessor: Dr. David Urbansky

Abstract

Artificial neural networks have achieved an error rate of less than 5% in the ImageNet software
competitions in recent years and are well suited to find patterns in data. Therefore, these networks
are first trained with known data sets and adjusted accordingly. Data sets are usually very expensive
to obtain and must therefore be selected and used with care. The choice of the right model for finding
patterns in data depends on the current problem. The training of these models is influenced by
many hyperparameters (HPs), which are determined in advance. The purpose is to train a model
with the right choice of HPs, which allows good predictions on unknown data (data that the model
has never seen before). In this thesis the creation of models for image classification by machine
learning (ML) is discussed and the model accuracies are compared. The main purpose is to find
optimal HPs and techniques for classification, which also allows to create an optimal model from a
small training data set.

Keywords

Image Classification, Small Data Set, Hyperparameter, Data Augmentation, Convolutional Neural
Network (CNN), Machine Learning, Deep Learning

iii

Kurzfassung

Künstliche neuronale Netze haben es in den letzen Jahren bei den ImageNet Software-Wettbewerben
auf unter 5% Fehlerrate geschaft und eignen sich gut dafür Muster in Daten zu finden. Hierzu wer-
den diese Netze vorher mit bekannten Datensätzen trainiert und entsprechend angepasst. Daten-
sätze sind meist sehr teuer in der Beschaffung und müssen deshalb mit Bedacht und entsprechender
Sorgfalt ausgewählt und eingesetzt werden. Die Wahl des richtigen Modells für das Finden von
Mustern in Daten ist abhängig vom aktuell vorliegendem Problem. Das Training dieser Modelle
wird durch viele Hyperparameter beeinflusst, welche vorher festgelegt werden. Das Ziel ist es
mit der richtigen Wahl der Hyperparameter ein Modell zu trainieren, welches gute Vorhersagen
auf noch unbekannte Daten ermöglicht (Daten, die das Modell zuvor nie gesehen hat). In dieser
Arbeit wird auf das Erstellen von Modellen für die Bildklassifikation mittels maschinellem Lernen
eingegangen und es werden die Modellgenauigkeiten miteinander verglichen. Das Hauptziel ist es,
optimale Hyperparameter und Techniken für die Klassifikation zu finden, die es auch ermöglichen,
mit einem kleinen Trainingsdatenset ein optimales Modell zu erstellen.

Schlüsselwörter

Bildklassifizierung, Kleiner Datensatz, Hyperparameter, Data Augmentation, Convolutional Neu-
ral Network (CNN), Machine Learning, Deep Learning

iv

Contents

1 Introduction 1

1.1 Insufficient amount of data . 1

2 Background 3

2.1 Image classification . 3

2.1.1 Deductive approach . 4

2.1.2 Inductive approach . 4

2.1.3 Balanced training data set . 5

2.1.4 Training, validation and test data set . 5

2.2 Classification metrics and confusion matrix . 6

2.2.1 Loss function . 6

2.2.2 Confusion matrix . 7

2.2.3 Accuracy . 8

2.2.4 Other metrics . 8

2.3 Machine learning . 9

2.3.1 Short definitions . 9

2.3.1.1 Backpropagation . 9

2.3.1.2 Overfitting und underfitting . 9

2.3.1.3 Batch size . 9

2.3.1.4 Class . 9

2.3.1.5 Data augmentation . 9

2.3.1.6 Dropout . 10

2.3.1.7 Learning epoch . 10

2.3.1.8 Learning rate . 10

2.3.2 Methods of machine learning . 10

2.3.2.1 Supervised learning . 10

2.3.2.2 Unsupervised learning . 11

2.3.3 Artificial neural network . 11

2.3.4 Convolutional neural network . 13

2.3.5 Transfer learning . 14

2.3.6 Overview of current and known convolutional neural networks 15

3 Related work 17

4 Considerations and implemention 18

4.1 Research questions and hypothesis section . 18

4.2 Working environment and model creation . 18

4.3 Performance . 18

4.4 Experimental Setup . 19

4.4.1 Software specification . 19

4.4.2 Used data set . 19

v

4.4.3 Default setup . 19

5 Results 21

5.1 Model validation . 21

5.1.1 Influence of number of trained images on accuracy 21

5.1.2 Comparison of different convolutional neural network (CNN) models 22

5.1.3 Use of the transfer learning (TL) approach . 22

5.1.4 Influence of the number of trained layers on the accuracy 24

5.1.5 Influence of different error optimizers . 24

5.1.5.1 Comparison optimizer . 25

5.1.5.2 Influence of the momentum and the Nesterov momentum 26

5.1.5.3 Influence of a dynamic learning rate on accuracy (scheduling) . . . 27

5.1.6 Different batch sizes . 28

5.1.7 Different activation functions . 30

5.1.8 Different number of learned epochs . 30

5.1.9 Influence of dropout . 31

5.2 Optimization process . 32

5.2.1 Comparison of different neural network types 32

5.2.2 Data augmentation . 33

5.2.3 Hierarchical classification . 35

5.2.3.1 k-means clustering . 36

5.2.3.2 Agglomerative hierarchical clustering 37

5.2.3.3 Conclusion of the hierarchical classification 38

5.2.4 Binary classifiers . 38

6 Summary and outlook 40

List of acronyms 42

List of literature 43

A Appendix A1

A.1 Performance comparison between graphics processing unit (GPU) and central pro-
cessing unit (CPU) . A1

A.2 Number of training and validation files . A1

A.3 Example of a dropout layer after the CNN model (Python code example) A2

A.4 Principal component analysis of the food-50model A3

A.5 Visualised representation of grouped classes with k-means A4

A.6 Model accuracy of grouped classes with k-means . A4

A.7 Visualised representation of grouped classes with agglomerative hierarchical clustering A5

A.8 Model accuracy of grouped classes with agglomerative hierarchical clustering A5

A.9 Model accuracy of binary classification . A6

vi

List of figures

1 Cat and dog comparison . 3

2 Deductive approach . 4

3 Inductive approach . 4

4 Example of pictures of a burger, doughnut and pizza class 5

5 Confusion matrix . 7

6 Confusion matrix example . 8

7 The construction of an artificial neuron . 12

8 The construction of a simple neural network . 12

9 Linear vs. nonlinear classification . 13

10 Simple neural network with one hidden layer . 13

11 Simple convolution and simple pooling . 14

12 Architecture of a traditional convolutional neural network 14

13 Architecture of a traditional convolutional neural network with TL 15

14 Overview of current and known convolutional neural networks 16

15 Overview of influence of number of trained images on accuracy 21

16 Overview of known CNN models . 22

17 Overview of use of the TL approach . 23

18 Overview of training without TL approach . 23

19 Overview of influence of the number of trained layers 24

20 Overview of best optimizer (validation) . 25

21 Overview of best optimizer (training) . 26

22 Overview of experiments of different momentum values without Nesterov 27

23 Overview of experiments of different momentum values with Nesterov 27

24 Overview of a dynamic learning rate on accuracy . 28

25 Overview of the influence of a different batch size (validation) 29

26 Overview of the influence of a different batch size (training) 29

27 Overview of the influence of difference activation functions 30

28 Overview of the influence of a longer training period with more epochs 31

29 Overview of the dropout parameter (validation) . 31

30 Overview of the dropout parameter (training) . 32

31 Comparison of different neural network types . 33

32 Example of data augmentation . 34

33 Comparison of data augmentation . 34

34 Principal component analysis of the food-50model 36

A.1 Number of training and validation files . A1

A.2 Principal component analysis of the food-50model A3

A.3 Grouped classes with k-means . A4

A.4 Grouped classes with agglomerative hierarchical clustering A5

vii

List of tables

1 Grouped classes with k-means . 37

2 Grouped classes with agglomerative hierarchical clustering 37

3 Comparison of the model accuracy at different k values. 39

A.1 Performance comparison between GPU and CPU . A1

A.2 Grouped classes with k-means . A4

A.3 Grouped classes with agglomerative hierarchical clustering A5

A.4 Overview of binary classification . A6

viii

1 Introduction

This thesis deals with the creation of models for image classification using machine learning (ML).
Many variable hyperparameters (HPs) will have a decisive influence on the accuracy of the model
when creating the models and are compared here in detail. In addition to the accuracy of the
models, the computing time required to create the models also plays a role and should be included
in the evaluation. I assume that a small learning rate combined with many learning epochs and
correspondingly more computing time required will achieve better results than a few learning
epochs combined with a high learning rate (slow adaptation vs. fast adaptation). I also assume
that a high quality and a larger amount of data will have a significantly positive influence on the
result. New and more complex convolutional neural networks (CNNs) are more successful in
model accuracy than older and smaller models. I also assume that HP settings can only change
the model accuracy to a limited point and that more attention must be given to the optimization
processes used in chapter “Optimization process”. Chapter “Model validation” deals with this
hypothesis and shows that the logical consideration in this case is only partially correct.

1.1 Insufficient amount of data

If one gives a person a doughnut and explain that it is a doughnut, then after some repetition one is
able to recognize any kind of doughnut in the future. With ML this problem is a bit more complex.
As with most ML methods, a large amount of data is required. The amount of required data
depends on the current problem. Especially when one is dealing with many classes to be predicted,
experience shows that the amount of data increases. A paper from 2012 with the title “ImageNet
Classification with Deep Convolutional Neural Networks” describes how to train a model with
1.2 million high-resolution images.1 The model could recognize 1,000 objects (1,000 classes), was
trained with 1,000 images per class and won the top 5 test error rate with 15.3% in 2012 at the annual
ImageNet competition. Other articles dealing with this topic confirm this number of images per
class.2,3

Depending on the number of classes to be trained, one can quickly reach a required data set,
which consists of many Gbytes of data. With transfer learning (TL) it is possible to reduce this
number a little bit, but the problem of the large amount of data remains. A journal publication,4

written by an author affiliated with Microsoft, showed at that time that simple algorithms with
enough data gave similar results as complex algorithms based on less data. The researchers referred
to data which should classify language constructs:

“We have shown that for a prototypical natural language classification task, the performance of
learners can benefit significantly from much larger training sets.”

Another article only a few years later also addresses this issue.5 This article referred to data
that learn from texts where usually only small or medium sized data sets are available. To improve
the efficiency in this case, the approach referred to use data more efficiently and to optimize the
algorithms:

1Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep convolutional neural
networks”. In: Advances in neural information processing systems. 2012, pp. 1097–1105. url: https://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf.

2Abhinav Sagar. Deep Learning for Image Classification with Less Data. en. Library Catalog: towardsdatascience.com.
Nov. 2019. url: https://towardsdatascience.com/deep-learning-for-image-classification-with-less-data-
90e5df0a7b8e (visited on 02/25/2020).

3Pete Warden. How many images do you need to train a neural network? en. Library Catalog: petewarden.com. Dec. 2017.
url: https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/ (visited on
02/25/2020).

4Michele Banko and Eric Brill. “Scaling to very very large corpora for natural language disambiguation”. In: Proceedings
of the 39th annual meeting on association for computational linguistics. Association for Computational Linguistics. 2001, pp. 26–
33. url: https://www.aclweb.org/anthology/P01-1005.pdf.

5Alon Halevy, Peter Norvig, and Fernando Pereira. “The unreasonable effectiveness of data”. In: IEEE Intelligent
Systems 24.2 (2009), pp. 8–12. url: https://static.googleusercontent.com/media/research.google.com/de//pubs/
archive/35179.pdf.

1

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://towardsdatascience.com/deep-learning-for-image-classification-with-less-data-90e5df0a7b8e
https://towardsdatascience.com/deep-learning-for-image-classification-with-less-data-90e5df0a7b8e
https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/
https://www.aclweb.org/anthology/P01-1005.pdf
https://static.googleusercontent.com/media/research.google.com/de//pubs/archive/35179.pdf
https://static.googleusercontent.com/media/research.google.com/de//pubs/archive/35179.pdf

“Choose a representation that can use unsupervised learning on unlabeled data, which is so much
more plentiful than labeled data.”

Whatever the approach is to train and use data. Depending on the problem, the main focus can
be on the amount of required data, the type of data processing or perhaps a combination of both.

2

2 Background

2.1 Image classification

Classifications are a process of identifying to which class an unobserved object belongs. Several
predefined classes can be specified and, based on their properties, an attempt can be made to classify
unknown and previously unobserved objects. The procedure for image classification is similar. The
previously mentioned objects are now simply images (as shown in Figure 1).

Figure 1: Cat and dog comparison

For a long time, the automatic recognition of objects, people and scenes in images by computers
was considered impossible. The complexity seemed too great to be programmatically taught
to an algorithm. Until a few decades ago, attempts were made to achieve image classification
by manually developed algorithms. Automated classification based on given and pre-classified
data sets and the automated creation of models was a new step into a new approach. The ever
increasing amount of available computing time plays as much a decisive role in the success as
parallel computations on several GPUs, the development of more efficient algorithms and methods
such as data augmentation and the establishment of online databases with large amounts of labeled
data (ImageNet).6 Meanwhile, image recognition has become a widespread application area of ML.
So-called "CNNs"7 or "ConvNets" are often used for images.

The image classification algorithm accepts an image as input and classifies it into one of the
possible output categories. The approach to learn knowledge from existing data is called machine
learning (ML).8 In combination with artificial neural networks (ANNs) it is more precisely called
deep learning (DL).9 Various convolutional neural networks (CNNs), such as ResNet, DenseNet,
Inception, etc. have been developed as high-precision networks for image classification. At the
same time, image data sets were created to capture tagged image data. These are now primarily
used to train existing networks and to organize annual challenges that compete with the model
accuracies already known and developed. ImageNet is such a large data set with more than 11
million images and over 11,000 categories.10 Once a network has been trained with ImageNet
data, it can be generalized with other data sets by simple re-compilation or optimization. In this
transfer learning approach, a network is initialized with weights that come from a previously trained
network. This previously initialized network is now simply adapted for a new image classification
task.

The underlying thesis here is mainly concerned with supervised learning, in which a mathe-
matical model is trained based on existing known data sets. The purpose of the trained model is to
make the best possible predictions even for unknown images. Known data sets are usually created

6George Seif. Deep Learning for Image Recognition: why it’s challenging, where we’ve been, and what’s next. en. Library
Catalog: towardsdatascience.com. May 2019. url: https://towardsdatascience.com/deep-learning-for-image-
classification-why-its-challenging-where-we-ve-been-and-what-s-next-93b56948fcef (visited on 02/28/2020).

7Convolutional neural network. en. Page Version ID: 942501792. Feb. 2020. url: https://en.wikipedia.org/w/index.
php?title=Convolutional_neural_network&oldid=942501792 (visited on 02/25/2020).

8Machine learning. en. Page Version ID: 942989288. Feb. 2020. url: https://en.wikipedia.org/w/index.php?title=
Machine_learning&oldid=942989288 (visited on 02/28/2020).

9Deep learning. en. Page Version ID: 942561541. Feb. 2020. url: https://en.wikipedia.org/w/index.php?title=
Deep_learning&oldid=942561541 (visited on 02/28/2020).

10ImageNet. en. Page Version ID: 929993952. Dec. 2019. url: https://en.wikipedia.org/w/index.php?title=
ImageNet&oldid=929993952 (visited on 02/28/2020).

3

https://towardsdatascience.com/deep-learning-for-image-classification-why-its-challenging-where-we-ve-been-and-what-s-next-93b56948fcef
https://towardsdatascience.com/deep-learning-for-image-classification-why-its-challenging-where-we-ve-been-and-what-s-next-93b56948fcef
https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=942501792
https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=942501792
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=942989288
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=942989288
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=942561541
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=942561541
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=929993952
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=929993952

manually, automatically determined based on known facts, or determined in a semi-automatic
process.

2.1.1 Deductive approach

Since the late 1960s, attempts have been made to classify images with self-written algorithms. This
part of computer vision deals with techniques such as image creation, image processing and image
segmentation. In the field of image processing, well-known techniques such as edge detection,
feature detectors, edge linking, contrast enhancement, etc. are used.11 Common to all techniques is
the use of the deductive approach. With the deductive approach, one creates rules (feature detectors)
which are supposed to predict the desired result. These rules are given and described and thus
allow later classification of unknown objects. Since the model and its algorithm are sufficiently well
known, this procedure is called a white-box procedure (Figure 2).

input model output

Figure 2: Deductive approach (the shown model is a white-box model)

2.1.2 Inductive approach

The inductive approach takes a different approach to classifying images. The purpose is not to
specify a rule, but to learn a rule (model) automatically from already known individual objects.12

A model is usually a complex function and a mathematical representation of a space, in which
individual objects with their properties can be mapped and separated. This measure of the capacity
that can be learned by this complex function is called Vapnik–Chervonenkis dimension (VCD).13

The model is adapted piece by piece to the known objects in such a way that the input value
corresponds to the output value or corresponds to a large extent (backpropagation). The goal
is to create a function with this model, which can classify unknown objects in the best possible
way. Because the space of this model is mostly far away from the imagination and the possibility of
explanation, this procedure is also called a black-box procedure (Figure 3). The procedure described
here is mostly used for any kind of supervised learning (see chapter “Supervised learning”) and is
a part of ML (see chapter “Machine learning”).

input

model

output

ML strategy

Figure 3: Inductive approach (the shown model is a black-box model)

11Richard Szeliski. “Computer Vision: Algorithms and Applications”. en. In: (), p. 979.
12Ramon Lopez De Mantaras and Eva Armengol. “Machine learning from examples: Inductive and Lazy methods”. In:

Data & Knowledge Engineering 25.1-2 (1998), pp. 99–123. url: https://www.sciencedirect.com/science/article/pii/
S0169023X97000530/pdf.

13Vapnik–Chervonenkis dimension. en. Page Version ID: 942482212. Feb. 2020. url: https://en.wikipedia.org/w/
index.php?title=Vapnik%E2%80%93Chervonenkis_dimension&oldid=942482212 (visited on 02/25/2020).

4

https://www.sciencedirect.com/science/article/pii/S0169023X97000530/pdf
https://www.sciencedirect.com/science/article/pii/S0169023X97000530/pdf
https://en.wikipedia.org/w/index.php?title=Vapnik%E2%80%93Chervonenkis_dimension&oldid=942482212
https://en.wikipedia.org/w/index.php?title=Vapnik%E2%80%93Chervonenkis_dimension&oldid=942482212

2.1.3 Balanced training data set

Neural networks have made enormous progress in the field of pattern recognition in recent years.
A decisive factor is that the data for learning must be of high quality and easy for the network to
process. Wrongly classified or irrelevant data could cause the network to learn something wrong.
This also applies to non-existent or unsuitable pre-processing.14

With the beginning of a classification project, the question arises what exactly one wants to
classify and how extensive the classification should be. Assuming one wants to identify different
classes of food, these could be classes like burgers (as shown in Figure 4a), doughnuts (Figure
4b) or pizza (Figure 4c), etc. For these classes, one now needs a large number of images. Ideally,
this data should reflect reality as far as possible. A large variation is advantageous (balanced data
set): different viewing angles, size, position, colour brightness, variations, number, etc. Images of
e.g. only one colour brightness or only one viewing angle should be avoided. If the data are not
balanced, they must be corrected accordingly: e.g. by adding further data, image processing or
by removing data that causes an imbalance. Furthermore, the selected classes should be clearly
optically separable from each other. If two classes are visually very similar and not really distin-
guishable even by a human, consideration should be given to combining them (e.g. "burger" and
"veggie burger").

Figure 4: (a) Example of pictures of a burger class (top), (b) Example pictures of a doughnut class
(middle), (c) Example of pictures of a burger class (bottom)

Accessing data is often not that easy. Every data source has its own special features. One
way to access data would be an automatic crawling of image databases (Flickr15), search engines
(Google16, Bing17) or reviews (TripAdvisor), in which images appear and can be associated with the
text (“This here is the best doughnut I’ve ever eaten.”). A creative approach is an advantage here.

Probably the most expensive way to obtain data is to search and classify them manually, e.g.
by an ontologist. The ontologist evaluates and searches for different images and manually classifies
them in the appropriate classes. A combined variant is also possible and probably preferable:
automatic crawling and manual sorting out of incorrect, unfavorable or irrelevant images.

2.1.4 Training, validation and test data set

Before starting the training of balanced images, they must be divided into a training, a test and
possibly a validation data set. This is necessary because neural networks (NNs) will not generalize to

14Douwe Osinga. Deep Learning Kochbuch: Praxisrezepte für einen schnellen Einstieg. O’Reilly Verlag, 2019, pp. 19–26. isbn:
9783960090977.

15Flickr images - Doughnut. URL: https://www.flickr.com/search/?text=doughnut
16Google images - Doughnut. URL: https://www.google.de/search?q=doughnut&tbm=isch
17Bing images - Doughnut. URL: https://www.bing.com/images/search?q=doughnut

5

https://www.flickr.com/search/?text=doughnut
https://www.google.de/search?q=doughnut&tbm=isch
https://www.bing.com/images/search?q=doughnut

some extent, but will learn by heart (overfitting18). The idea is to train with a training data set, while
the validation data set is used to monitor the general validity of the network and its parameters.
Based on the results, adjustments are made at runtime. Since the adjustment of the parameters
is carried out using the test data, there is also an independent test data set, which carries out a
renewed check of the model for previously uninvolved data. This ensures that hyperparameters
are not inadvertently optimized for the validation data set only.19 The use of the test data set is
optional and simulates the model under real conditions. If the number of data is limited, this data
record can also be added to the training data record, for example. In this thesis, the test data set is
not used and all evaluations refer to the validation data set.

An optimal division of the training and validation data set depends on the existing classification
problem and the amount of data available. In this thesis a ratio of 80% training data and 20%
validation data is used according to the Pareto principle, unless otherwise stated.

2.2 Classification metrics and confusion matrix

Choosing the right metric is crucial in evaluating ML models. Metrics are used to monitor and
measure the performance of a model during training and testing. Some important metrics are
explained below.

2.2.1 Loss function

For the classification of an image ϑ a NN is usually used as a model. The function for this model
is specified with M(ϑ). The last layer of this NN-based classifier is mostly a softmax function.20

The model assigns a vector λ of size n to an element ϑ and is the predicted value of this element.
The size n corresponds to the number of classes to be distinguished.21 Each individual value p of λ
corresponds to the probability that it is class classn (Equation (1)).

M(ϑ) = λ =


p1
p2
p3
...

pn


∣∣∣∣∣∣ n∑

i=1

pi = 1 (1)

The expected value of the parameter function g(ϑ) and thus of the current element ϑ and
its expected labelled class is returned as a so-called "one-hot vector". The vector element for the
expected class has the value 1, all others have the value 0. This is also called one hot encoding
(using the example of an element of class2):

g(ϑclass2) =


0
1
0
...
0


(2)

The loss function22 assigns a loss to each prediction λ, which results from the comparison with
the true value of the parameter function g(ϑclass). Backpropagation (see chapter “Backpropagation”)
calculates for each element ϑ the gradient of the loss function which results with M(ϑ). The gradient

18Overfitting. en. Page Version ID: 942053730. Feb. 2020. url: https://en.wikipedia.org/w/index.php?title=
Overfitting&oldid=942053730 (visited on 02/25/2020).

19Osinga, Deep Learning Kochbuch: Praxisrezepte für einen schnellen Einstieg.
20Softmax function. en. Page Version ID: 928536872. Nov. 2019. url: https://en.wikipedia.org/w/index.php?title=

Softmax_function&oldid=928536872 (visited on 03/03/2020).
21Aurélien Géron. “Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Techniken

für intelligente Systeme”. In: O’Reilly Verlag, 2017. Chap. Entscheidungsgrenzen, pp. 138–140. isbn: 9783960090618.
22Verlustfunktion (Statistik). de. Page Version ID: 177095272. May 2018. url: https://de.wikipedia.org/w/index.php?

title=Verlustfunktion_(Statistik)&oldid=177095272 (visited on 02/26/2020).

6

https://en.wikipedia.org/w/index.php?title=Overfitting&oldid=942053730
https://en.wikipedia.org/w/index.php?title=Overfitting&oldid=942053730
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=928536872
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=928536872
https://de.wikipedia.org/w/index.php?title=Verlustfunktion_(Statistik)&oldid=177095272
https://de.wikipedia.org/w/index.php?title=Verlustfunktion_(Statistik)&oldid=177095272

is used to adapt the parameters of function M(ϑ) to reduce the prediction error. As an example, a
typical loss function for an r-dimensional space for one element is shown in Equation (5).

Lr(ϑ,λ) := ‖λ − g(ϑ)‖r (3)

λ represents the estimated value and g(ϑ) the parameter function which returns the actual
value for ϑ. The loss function is not only determined for one element. It is necessary to consider all
elements together to create a model that generalises. The average loss on the entire data set with k
elements is thus:

L̂ =
1
k

k∑
i=1

Lr(ϑi,λi) (4)

For the backpropagation algorithm not the euclidean norm Lr(ϑ,λ) is used, but the vector itself
is needed and will be further used in this thesis:

L(ϑ,λ) := λ − g(ϑ) (5)

2.2.2 Confusion matrix

The confusion matrix is a special quadratic matrix in the field of ML that allows the visualization of
the performance of a predictive model (Figure 5). Each row of the matrix represents the actual class,
while each column indicates the number or a numerical value as a percentage of the predicted class
(or vice versa). A special class class1 is considered: True positive (TP) corresponds to the value of
the correctly determined predictions of the class currently under consideration. False negative (FN)
indicates how often other classes are detected as the class currently under consideration. False
positive (FP) indicates how often classes other than the currently viewed class were determined.
True negative (TN) in turn indicates that classes other than the current class were correctly predicted
as the other classes.23

predicted

class1 class2 . . . classn

ac
tu

al

class1 TP FN

class2

FP TN. . .

classn

Figure 5: Confusion matrix

Finally, the confusion matrix has the following structure (Equation (6)). Pi, j means classi was
predicted although it should have been class class j. All values on the main diagonal were correctly
predicted (Pi,i). #Pi, j in turn is the total number that classi was recognized, although it should be
class j. If the model has a model accuracy of 100%, there are values greater than 0 only on the main
diagonal and all other non-diagonal elements are 0 (Equation (7)).

Mcon f usion =


#P1,1 . . . #Pn,1
...

. . .
...

#P1,n . . . #Pn,n

 = (mnn) (6)

23Confusion matrix. en. Page Version ID: 940280604. Feb. 2020. url: https://en.wikipedia.org/w/index.php?title=
Confusion_matrix&oldid=940280604 (visited on 02/28/2020).

7

https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=940280604
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=940280604

Mcon f usion =


#P1,1 . . . 0
...

. . .
...

0 . . . #Pn,n

 = (mnn) (7)

2.2.3 Accuracy

Top-1 accuracy is probably the most important accuracy. It tells one the percentage of the model’s
best prediction of the data in the validation set that matches the expected class.

Accuracy =
TP + TN

TP + TN + FP + FN
=

∑n
i, j=1 mi j∑n

i=1
∑n

j=1 mi j
=

Correctall

CorrectPossibleall
(8)

The Top 5 Accuracy is another accuracy specification. However, not only the best hit is included
here, but also the next four. As soon as the correct class can be found within the first five predicted
classes, this prediction is also true:

Accuracytop−5 =
CorrectWithinTheBest5Classesall

CorrectPossibleall
(9)

The accuracy of the entire model is a good indication of the performance of the model. However,
a problem occurs in extreme cases where assumptions can no longer be made reliably. For example,
if one is working with an unbalanced data set.24 Example: Suppose one has a model that always
predicts the class class1. The class class1 consists of 9,990 elements and from the other classes class2
to classn one has exactly 10. Then the confusion matrix looks like in the following figure (Figure 6).

predicted

class1 class2 . . . classn

ac
tu

al

class1 TP = 9990 FN = 0

class2

FP = 10 TN = 0. . .

classn

Figure 6: Confusion matrix example

The model accuracy in this case is 99.9%, although it is a bad model:

Accuracy = 99, 9% (10)

The example is an extreme example and is intended to illustrate that accuracy is not always
the best choice of a classification metric, although it is very often used in this paper. The classes in
the used data set should be balanced as far as possible. The data set used in this thesis is not very
well balanced (see figure A.1), but far away from the extreme example above. The data set used in
the chapter “Data augmentation” is very well balanced.

2.2.4 Other metrics

There are other metrics such as precision, recall and F-measure, but they will not be discussed here
because they are not used in this thesis. Precision, for example, is used how reliable the statement
of a prediction of a class is. It is calculated from the ratio of the correctly classified objects of a class
to all predictions of this class.

24Aurélien Géron. “Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Techniken
für intelligente Systeme”. In: O’Reilly Verlag, 2017. Chap. Konfusionsmatrix, pp. 86–88. isbn: 9783960090618.

8

2.3 Machine learning

Machine learning is a generic term for the artificial generation of knowledge from experience.25 It
follows the approach of inductive learning (see also chapter Inductive approach).

2.3.1 Short definitions

2.3.1.1 Backpropagation

Backpropagation26 is a procedure for tuning ANNs during training. At any time during the training
the current output of the network is known and can be compared with the expected output. The
backpropagation algorithm tries to adjust the parameters of the network to reduce the loss between
current output and expected output (see also chapter “Loss function”).

2.3.1.2 Overfitting und underfitting

The term overfitting and the term underfitting describe two opposite extremes and both result in
poor performance of model accuracy on test data sets.27 While with overfitting the model was
trained too precisely on the details of the training data set, with underfitting the model was not
trained sufficiently. An overfitted model usually provides very good training accuracies. The
purpose is to find a middle way, where a generalized model is trained, which provides high
accuracies on a test data set that the model has not seen before.

2.3.1.3 Batch size

The batch size defines the number of images that are simultaneously passed forward and backward
through the NN before the parameters in the network are adjusted (gradient update). Normally it
is intended to train all training data per epoch with one process. Especially in the field of image
classification this is usually not possible due to the limited memory, which is why an epoch is
divided into many small batches (mini-batches). The advantage is that one only has to keep the
data in memory that is necessary for the current batch. Furthermore, overfitting can be more easily
limited with small batches.28 The disadvantage is an increased variance (noise in the accuracy of
the model), since it is unlikely that a small batch is a good representation of the entire data set. The
computing time increases as well, since the backpropagation increases according to the number of
mini-batches. There is no magic rule for choosing the right batch size. This is a hyperparameter
that must be determined before the training begins.

2.3.1.4 Class

In this thesis, a class is a collection of arbitrary objects. These objects are defined by a logical
property that all objects in this class satisfy. For example, these could be pictures that contain a
pizza. All these images are now assigned to the class pizza.

2.3.1.5 Data augmentation

Data augmentation is the artificial augmentation of a data set. This technique is primarily used
when little data is available or the data set is not sufficiently balanced (unbalanced data set). Existing

25De Mantaras and Armengol, “Machine learning from examples: Inductive and Lazy methods”.
26Backpropagation. en. Page Version ID: 939314095. Feb. 2020. url: https://en.wikipedia.org/w/index.php?title=

Backpropagation&oldid=939314095 (visited on 02/25/2020).
27jabbar2015methods.
28Epochs, Batch Size, & Iterations. Library Catalog: docs.paperspace.com. url: https://docs.paperspace.com/machine-

learning/wiki/epoch (visited on 02/29/2020).

9

https://en.wikipedia.org/w/index.php?title=Backpropagation&oldid=939314095
https://en.wikipedia.org/w/index.php?title=Backpropagation&oldid=939314095
https://docs.paperspace.com/machine-learning/wiki/epoch
https://docs.paperspace.com/machine-learning/wiki/epoch

images are rotated, mirrored, color adjusted, cropped, etc. Data Augmentation can improve model
accuracy during training.29

2.3.1.6 Dropout

Dropout is a regularization technique to reduce overfitting in neural networks.30 The term refers
to ignoring connections between neurons in a neural network during the training period. This
ensures that the currently trained object is only partially learned. The ignored connections are
selected randomly.

2.3.1.7 Learning epoch

A learning epoch is understood to be the one time training run with all training data sets. Usu-
ally one training run is not sufficient, which is why further learning epochs follow. As soon as
the performance of the network does not increase anymore with further epochs, the training is
terminated.

2.3.1.8 Learning rate

The learning rate is a tuning parameter in an optimization algorithm. It expresses how large the
step size is for each iteration with which the parameters move closer to the minimum of a loss
function. It should not be too high (minimum is not found) and not too small (very slow learning).
The learning rate is often indicated by the character η or α.

2.3.2 Methods of machine learning

Different ML systems can be classified according to the type and procedure of monitoring the
training. A distinction is made as to which type of data is available or has to be determined by the
user.

2.3.2.1 Supervised learning

Supervised learning refers to ML with known training data sets (see also chapter “Inductive ap-
proach”). The learning process in turn refers to the ability of an artificial intelligence (AI) to
reproduce regularities and patterns. The results are known by laws of nature or expert knowledge
and are used to teach the system by creating a training set containing the desired solutions. This
is also called labelled data. The learning algorithm now tries to find a hypothesis epoch by epoch,
which allows the most accurate predictions on unknown data. A hypothesis in this case is an image
that assigns the assumed output value (the predicted class) to each input value (the image itself).
This thesis makes extensive use of supervised learning.

In supervised learning, an input vector is fed to a classification function (usually an artificial
neural network). The input vector generates an output vector using the classification function,
which produces this neural network in its current state31. This value is compared with the value
that it should actually output. The comparison of the nominal and actual state provides information
on how and in what form changes must be made to the network in order to further approximate the
actual state and minimize the error. For ANN without a hidden layer (single-layer perceptron32),

29Luis Perez and Jason Wang. “The effectiveness of data augmentation in image classification using deep learning”. In:
arXiv preprint arXiv:1712.04621 (2017). url: https://arxiv.org/pdf/1712.04621.pdf.

30noauthor_dropout_2019.
31The neural network consists of many (usually millions) parameters, which can be adjusted during the learning process

to minimize the error.
32Perceptron. en. Page Version ID: 942271496. Feb. 2020. url: https://en.wikipedia.org/w/index.php?title=

Perceptron&oldid=942271496 (visited on 02/25/2020).

10

https://arxiv.org/pdf/1712.04621.pdf
https://en.wikipedia.org/w/index.php?title=Perceptron&oldid=942271496
https://en.wikipedia.org/w/index.php?title=Perceptron&oldid=942271496

the delta rule33 for correction can be applied. For networks with one or more hidden layers
backpropagation34 is used to minimize the error. Backpropagation is a generalization of the delta
rule.

The neural network is only one algorithm from the category of supervised learning algorithms.
Other possible algorithms are:

• k-nearest neighbors35

• Linear regression36

• Logistic regression37

• Support-vector machine38

• Random forest39

• etc.

2.3.2.2 Unsupervised learning

Unsupervised learning tries to gain knowledge of patterns without labelled data. Suppose one has
several pictures of burgers, pizza and doughnuts, which are unsorted in a data set. Unsupervised
learning now tries to find similarities in order to cluster these images. In the best case one gets three
unnamed groups A, B and C at the end. Analysts will take a closer look at these groups afterwards
and draw a conclusion if possible: Group A is then called burger, Group B pizza, etc.

The following unsupervised learning algorithms can be used for clustering:

• k-means40

• Hierarchical clustering41

• Expectation–maximization42

• etc.

One technique called hierarchical clustering (see chapter “Hierarchical classification”) is used
later to facilitate the introduction of hierarchies. For the general analysis, the finding of optimal
parameters for learning models, this kind of learning is not used in this thesis.

2.3.3 Artificial neural network

Artificial neural networks provide functions that are able to separate highly complex data in multidi-
mensional space. For large and highly complex tasks, such as the classification of billions of images,
speech and text recognition, neural networks usually perform better than other ML methods. The
significant increase in computational capacity since the 1990s allows the training of large neural

33Least mean squares filter. en. Page Version ID: 941899198. Feb. 2020. url: https://en.wikipedia.org/w/index.php?
title=Least_mean_squares_filter&oldid=941899198 (visited on 02/25/2020).

34Backpropagation.
35k-nearest neighbors algorithm. en. Page Version ID: 942113305. Feb. 2020. url: https://en.wikipedia.org/w/index.

php?title=K-nearest_neighbors_algorithm&oldid=942113305 (visited on 02/28/2020).
36Linear regression. en. Page Version ID: 935782381. Jan. 2020. url: https://en.wikipedia.org/w/index.php?title=

Linear_regression&oldid=935782381 (visited on 02/28/2020).
37Logistic regression. en. Page Version ID: 941157282. Feb. 2020. url: https://en.wikipedia.org/w/index.php?title=

Logistic_regression&oldid=941157282 (visited on 02/28/2020).
38Support-vector machine. en. Page Version ID: 942477636. Feb. 2020. url: https://en.wikipedia.org/w/index.php?

title=Support-vector_machine&oldid=942477636 (visited on 02/28/2020).
39Random forest. en. Page Version ID: 938369502. Jan. 2020. url: https://en.wikipedia.org/w/index.php?title=

Random_forest&oldid=938369502 (visited on 02/28/2020).
40k-means clustering. en. Page Version ID: 942500957. Feb. 2020. url: https://en.wikipedia.org/w/index.php?title=

K-means_clustering&oldid=942500957 (visited on 02/28/2020).
41Hierarchical clustering. en. Page Version ID: 934548831. Jan. 2020. url: https://en.wikipedia.org/w/index.php?

title=Hierarchical_clustering&oldid=934548831 (visited on 02/28/2020).
42Expectation–maximization algorithm. en. Page Version ID: 936223068. Jan. 2020. url: https://en.wikipedia.org/w/

index.php?title=Expectation%E2%80%93maximization_algorithm&oldid=936223068 (visited on 02/28/2020).

11

https://en.wikipedia.org/w/index.php?title=Least_mean_squares_filter&oldid=941899198
https://en.wikipedia.org/w/index.php?title=Least_mean_squares_filter&oldid=941899198
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=942113305
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=942113305
https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=935782381
https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=935782381
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=941157282
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=941157282
https://en.wikipedia.org/w/index.php?title=Support-vector_machine&oldid=942477636
https://en.wikipedia.org/w/index.php?title=Support-vector_machine&oldid=942477636
https://en.wikipedia.org/w/index.php?title=Random_forest&oldid=938369502
https://en.wikipedia.org/w/index.php?title=Random_forest&oldid=938369502
https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=942500957
https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=942500957
https://en.wikipedia.org/w/index.php?title=Hierarchical_clustering&oldid=934548831
https://en.wikipedia.org/w/index.php?title=Hierarchical_clustering&oldid=934548831
https://en.wikipedia.org/w/index.php?title=Expectation%E2%80%93maximization_algorithm&oldid=936223068
https://en.wikipedia.org/w/index.php?title=Expectation%E2%80%93maximization_algorithm&oldid=936223068

networks within a reasonable period of time. Artificial neural networks are the core component of
deep learning, which denotes a method of ML.

Neural networks process an input vector x̄ and convert it to a new output vector ˆ̄x. They are
networks of many artificial neurons connected in series and parallel. An artificial neuron in turn
converts a vector into a scalar by scaling and summing the inputs x̄ with the changeable parameters
ω̄ and correcting them with a bias b (the bias is also a changeable variable). The activation function
step(z) ensures that the first degree polynomial (linear regression model) becomes a nonlinear
function43 (Figure 7).

x1
x2
...

xn
1

→

→

...
→

→

ω1
ω2
...
ωn
b

�
�

�
�

∑
step(z)

−→ h

∣∣∣∣∣∣ h = step(z) = step(ω̄ᵀ · x̄ + b)

Figure 7: The construction of an artificial neuron

The artificial neural network is composed of many layers connected in series, which again
contain neurons connected in parallel (Figure 8).

...

∑
step(z)

...

∑
step(z)

∑
step(z)

...
∑

step(z)

x1

x2

x3

xn

h1

hn

x̂1

x̂n

Input
layer

Hidden
layer

Output
layer

Figure 8: The construction of a simple neural network

A neural network is able to classify complex inputs. But how exactly does that work? The
following classification function is able to separate simple class problems, where x̄ represents the
coordinates of the corresponding class points and w̄ and b are learnable parameters:

f (x̄, ω̄, b) = sgn(ω̄ᵀ · x̄ + b) (11)

With this linear function, the classification example of the first representation of Figure 9 (i)
can be easily classified. The function corresponds to a neural network without a hidden layer and
contains only one input and one output layer with one artificial neuron without activation function.
The dimension that this function can separate is two and is called VC dimension44. In other words,
this function can separate exactly two classes linearly. But what about nonlinear problems?

43Aktivierungsfunktionen, ihre Arten und Verwendungsmöglichkeiten. de-DE. Library Catalog: www.ai-united.de Section:
Mathematik. Jan. 2019. url: https://www.ai-united.de/aktivierungsfunktionen-ihre-arten-und-verwendungsmoeg
lichkeiten/ (visited on 02/28/2020).

44Vapnik–Chervonenkis dimension: https://en.wikipedia.org/wiki/Convolutional_neural_network

12

https://www.ai-united.de/aktivierungsfunktionen-ihre-arten-und-verwendungsmoeglichkeiten/
https://www.ai-united.de/aktivierungsfunktionen-ihre-arten-und-verwendungsmoeglichkeiten/
https://en.wikipedia.org/wiki/Convolutional_neural_network

Linear classification(i) Nonlinear classification (ii) Nonlinear classification (iii)

Figure 9: Linear vs. nonlinear classification

For the second classification example one could still adjust the function (Figure 9, ii). For the
third nonlinear example (Figure 9, iii) the classification space is no longer sufficient and requires
a different algorithm. And this is where the neural networks come into play. A tool to visualize
the separation of data and to test the functionality of the individual layers is https://playground.
tensorflow.org45. In the simplest case, the above mentioned second nonlinear example can can
be solved by adding a hidden layer with three additional neurons (Figure 10).

Figure 10: Simple neural network with one hidden layer46

2.3.4 Convolutional neural network

An artificial neural network processes a vector and returns a new vector. The problem with input
data such as images is that at first view they cannot be successfully described as a vector to be trained
with a normal neural network. One needs an algorithm that can handle matrix-like inputs and that
is able to recognize patterns. In the past the principle of the convolutional layer was developed.
A convolutional layer receives a matrix input, transforms it and returns an output value (in this
case another matrix). This output value is then passed on to the next layer. A convolutional layer
contains a set t of square matrices (usually 3 × 3 or 5 × 5 matrices, n × n). These matrices are called
filters47, convolution matrices or kernel48,49 knn and are now applied to each area of the image Ixy

(Equation (12)).50 This process creates a new image (Figure 11c) and this image is commonly named
feature map.

I∗(x, y) =

n∑
i=1

n∑
j=1

I(x − i + a, y − j + a) · k(i, j)

∣∣∣∣∣∣ a =
n + 1

2
(12)

45Neural Network Right Here in Your Browser: https://playground.tensorflow.org
46Source: http://playground.tensorflow.org/
47Filters, which can recognize edges, corners, squares, etc. and in deeper layers things like eyes, ears, hair, etc.
48wu2017introductionConvolution.
49noauthor_kernel_2019.
50wu2017introductionCNNMatrixProduct.

13

https://playground.tensorflow.org
https://playground.tensorflow.org
https://playground.tensorflow.org
http://playground.tensorflow.org/

With a number of t kernels, t feature maps are created in which features defined in the filters
are highlighted. This process is also called convolution.51

(a) input matrix Ixy (b) kernel knn (c) feature map I∗xy (d) pooling

0 1 1 0 1 1
1 1 1 0 1 0
0 1 0 1 0 1
0 0 1 0 0 0
0 0 0 0 0 1
0 0 1 0 0 0

~
1 1 1
1 1 0
0 0 1

→

1 2 2 2 1 2
3 4 5 3 4 3
2 5 3 3 2 2
1 1 3 2 3 1
0 2 1 1 0 1
0 0 1 1 1 1

→
4 5 4
5 3 3
2 1 1

Figure 11: Simple convolution and simple pooling

Neural networks that make use of convolutional layers are called convolutional neural net-
works (CNNs) and have made a decisive contribution to the progress of image classification and
also in other areas like speech recognition.52 In addition to the convolutional layers, a CNN has
other special layers that differ from normal neural networks: For example the pooling layer. In a
pooling layer, unnecessary information is discarded and feature maps are reduced in size (Figure
11d). This process reduces the number of parameters and the computational complexity of the
model.53 The convolutional layer and the pooling layer usually alternate until a large vector is
created at the end (instead of matrix Ixy). This vector can be processed by a normal neural network
and finally ends with the output of the probability vector λ as described in chapter “Loss function”
(Figure 12).

input image

convolutional layer
layer l = 1

pooling layer
layer l = 2

convolutional layer
layer l = 3

pooling layer
layer l = 4

fully connected layer
layer l = 5

fully connected layer
output layer l = 6

Figure 12: Architecture of a traditional convolutional neural network

A big advantage of convolutional neural networks should not remain unmentioned: They
require relatively little preprocessing compared to other image classification algorithms. This
means that the network independently learns the filters that are normally developed by hand in
conventional algorithms, if trained with adequate training. This property of these networks is a
great advantage because they can be automated and change independently when the input data
changes and do not require human intervention.

2.3.5 Transfer learning

CNNs have made a significant contribution to the classification of images.54,55 With the foundation of
the research database ImageNet in 2006, annual competitions are organized to compare developed

51wu2017introductionConvolution.
52geron2017supervisedlearningCNN.
53o2015introductionPoolingLayer.
54geron2017supervisedlearningCNN.
55ning2019prototypingICBoDL.

14

neural networks. ImageNet is an image database with more than 14 million images. A CNN
called AlexNet in 2012 got a top-5 error of 15.3%. That doesn’t sound a lot, but this model won
the ImageNet competition ILSVRC 201256 far ahead of the second place with a top-5 error rate
of more than 26%. The special thing about this is the innovation of the CNN technology. With
this technology the model accuracy can be improved yearly. A CNN called ResNet-50 from the
year 2015 achieved a model accuracy of 5.3%.57 But the architecture of a CNN has a problem.
All convolutional layers are randomly initialized from the beginning and do not yet contain any
patterns. For it to work reliably, it needs to be trained with many images. If one would develop
and use a CNN from scratch, all convolutional layers have to be trained in advance.

The convolutional layers extract features such as edges, squares, circles, etc. These are present
in almost every image and the question arises whether one can reuse them to reduce the training
effort. The idea of transfer learning is to use an already pre-trained CNN and just adapt the fully
connected layer at the end of the convolutional neural network to the own problem (Figure 13).

Figure 13: The green area (see Figure 12) was replaced by a new neural network (red) adapted to
the new problem.

The advantage of a pre-trained network can be seen in the chapter “Use of the transfer learning
(TL) approach" of this thesis.

2.3.6 Overview of current and known convolutional neural networks

In the following a few current and well-known convolutional neural networks will be presented
(Figure 14). They differ mainly in the following metrics, whereby in combination each network has
its advantages and disadvantages:

• the top-1 accuracy (based on the ImageNet image data set)

• the computing operations which are required for a single forward pass (G-Ops)

• the model size (for comparison: the model size of InceptionV3 is about 180 Mbyte)

56ILSVRC 2012. URL: http://image-net.org/challenges/LSVRC/2012/
57alom2018historyHistory.

15

http://image-net.org/challenges/LSVRC/2012/

Figure 14: Overview of current and known convolutional neural networks58

58Source: https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

16

https://towardsdatascience.com/neural-network-architectures-156e5bad51ba

3 Related work

There are a number of studies on image classification on very large data sets.59,60,61 Most of the
time this huge number of classification classes and data sets is not desired. Furthermore, there are
many investigations on small data sets.62,63 What these investigations usually lack is an overview
and comparison of the common hyperparameters with respect to model accuracy in a single thesis.
This thesis will deal with this. Data is expensive to obtain and usually not easy to get (see chapter
“Balanced training data set”). And in contrast, image classifications are appearing in more and
more areas of our life and are also being used directly in more and more companies that have not
made use of them so far and are now considering introducing their own implementations. There
are e.g. companies which try to classify products based on different data. Is it a good idea to
implement your own implementation or is the step to the software tools of company giants like
Microsoft, Google and Co. unavoidable? A person sees a product X and classifies it: From the text,
the description or an image. Sometimes only an image remains, because e.g. texts have not been
maintained properly or only return cryptic values. And even then, this classification is often not a
challenge for humans: Because in this case, they recognize the product X based on the still existing
image.

59Jia Deng et al. “What does classifying more than 10,000 image categories tell us?” In: European conference on computer
vision. Springer. 2010, pp. 71–84. url: http://vision.stanford.edu/pdf/DengBergLiFei-Fei{_}ECCV2010.pdf.

60Yi Sun, Xiaogang Wang, and Xiaoou Tang. “Deep learning face representation from predicting 10,000 classes”. In:
Proceedings of the IEEE conference on computer vision and pattern recognition. 2014, pp. 1891–1898. url: https://www.cv-
foundation.org/openaccess/content{_}cvpr{_}2014/papers/Sun{_}Deep{_}Learning{_}Face{_}2014{_
}CVPR{_}paper.pdf.

61Krizhevsky, Sutskever, and Hinton, “Imagenet classification with deep convolutional neural networks”.
62Francois Chollet. “Building powerful image classification models using very little data”. In: Keras Blog (2016). url:

http://deeplearning.lipingyang.org/wp-content/uploads/2016/12/Building-powerful-image-classification-
models-using-very-little-data.pdf.

63Sagar, Deep Learning for Image Classification with Less Data.

17

http://vision.stanford.edu/pdf/DengBergLiFei-Fei{_}ECCV2010.pdf
https://www.cv-foundation.org/openaccess/content{_}cvpr{_}2014/papers/Sun{_}Deep{_}Learning{_}Face{_}2014{_}CVPR{_}paper.pdf
https://www.cv-foundation.org/openaccess/content{_}cvpr{_}2014/papers/Sun{_}Deep{_}Learning{_}Face{_}2014{_}CVPR{_}paper.pdf
https://www.cv-foundation.org/openaccess/content{_}cvpr{_}2014/papers/Sun{_}Deep{_}Learning{_}Face{_}2014{_}CVPR{_}paper.pdf
http://deeplearning.lipingyang.org/wp-content/uploads/2016/12/Building-powerful-image-classification-models-using-very-little-data.pdf
http://deeplearning.lipingyang.org/wp-content/uploads/2016/12/Building-powerful-image-classification-models-using-very-little-data.pdf

4 Considerations and implemention

4.1 Research questions and hypothesis section

This thesis deals with image classification applications with limited resources. The following
questions arise: With which tools, techniques and ideas is it possible to create a successful image
classification model even with few resources? Do the conditions mentioned in subsection 1.1: In-
sufficient amount of data have to be fulfilled or are successful classifications already possible with
less? Is it possible to get the most out of model creation by adjusting certain tuning parameters? For
example, is a cluster analysis and the associated categorical breakdown of the classification a suc-
cessful approach? The following chapters will show that it is possible to reach a good classification
accuracy even with a small traning data set.

4.2 Working environment and model creation

All source code for the environment and the framework to train models and which has been
used for this thesis is available in a GitHub repository.64 This framework allows to set all the
hyperparameters mentioned in this thesis.65 Below is an example of a command line call with the
default values from the chapter “Default setup” (Listing 1). The created model is located in the
specified directory with the name model.h5:

1 user$ ml t r a i n \
2 −−use− t r a i n−val \
3 −−data−path= . / data / raw / food−50 \
4 −−model− f i l e= . / data / processed / experiment1 / type−of−experiment / model . h5

Listing 1: Example command line call to train the given data path

4.3 Performance

If one intends to implement and optimize deep neural networks (DNNs), the calculations must take
place on the GPU. It is also possible to run calculations on the CPU. Also, the installation of the
Keras library (see chapter “”) for CPU driven computations is much easier, because the installation
of the GPU drivers is not necessary. The disadvantage of training without GPU support is that it
takes longer to train larger models. Sufficiently trained models for the classification of images, for
example, are only achieved after several training units. A Training unit requires a lot of computing
power in the form of many matrix operations. A GPU is predestined for matrix operations.66

Table A.1 in the appendix in shows a tabular comparison of performance based on the Kaggle
flower data set training.67 This image set consists of 5 classes with about 4242 training images68

and was trained with the default values from chapter “Default setup” (but with only 10 epochs,
InceptionV3).

While the type of computing device (CPU or GPU) makes no difference in terms of preparation
and postprocessing, it makes a significant difference in training time. The slowest CPU takes more
than 80 times as many times as the fastest graphics card unit. The choice of the computing device

64Björn Hempel. Keras Machine Learning Framework. original-date: 2019-09-12T21:51:11Z. Feb. 2020. url: https:
//github.com/bjoern-hempel/keras-machine-learning-framework (visited on 02/29/2020).

65Björn Hempel. Keras Machine Learning Framework - Arguments of the training process. en. Library Catalog: github.com.
url: https://github.com/bjoern-hempel/keras-machine-learning-framework (visited on 02/29/2020).

66Kayvon Fatahalian, Jeremy Sugerman, and Pat Hanrahan. “Understanding the efficiency of GPU algorithms for
matrix-matrix multiplication”. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware.
2004, pp. 133–137. url: https://graphics.stanford.edu/papers/gpumatrixmult/gpumatrixmult.pdf.

67Flowers Recognition. en. Library Catalog: www.kaggle.com. url: https://kaggle.com/alxmamaev/flowers-
recognition (visited on 02/29/2020).

68Björn Hempel. Keras Machine Learning Framework - GPU vs CPU. en. Library Catalog: github.com. url: https:
//github.com/bjoern-hempel/keras-machine-learning-framework (visited on 02/29/2020).

18

https://github.com/bjoern-hempel/keras-machine-learning-framework
https://github.com/bjoern-hempel/keras-machine-learning-framework
https://github.com/bjoern-hempel/keras-machine-learning-framework
https://graphics.stanford.edu/papers/gpumatrixmult/gpumatrixmult.pdf
https://kaggle.com/alxmamaev/flowers-recognition
https://kaggle.com/alxmamaev/flowers-recognition
https://github.com/bjoern-hempel/keras-machine-learning-framework
https://github.com/bjoern-hempel/keras-machine-learning-framework

for all further tests clearly falls on the GPU. All experiments (unless otherwise specified) were
trained on a Nvidia GTX 1060 graphic card with 6 Gbyte of memory.

4.4 Experimental Setup

4.4.1 Software specification

Python v3.6.9

Python has become one of the most important programming languages in the field of machine
learning and data sciences in recent years.69 The language was chosen as programming language
because it has a large number of ML libraries to choose from. The fact that the TensorFlow
application programming interface (API) is mainly designed for use with Python and thus allows
stable development is also a contributing factor to the choice.

TensorFlow GPU v1.14.0 and Keras-GPU v2.2.4

TensorFlow GPU was chosen in conjunction with Keras GPU v2.2.4 to perform the calculations on
the GPU and not on the CPU. This has significantly reduced the time of model creation (see chapter
“Performance”).

Keras v2.2.4

In the following experiments TensorFlow is used as backend. Keras translates the function calls
into the corresponding functions of TensorFlow. Keras as the parent library simplifies the use of
TensorFlow, makes the code easier to read and minimizes errors.

4.4.2 Used data set

The used data set is a food data set consisting of 50 classes, 14,866 image files and has a size of
765 Mbyte (food-50). This data set was created and labelled manually. The files are unevenly
distributed between the classes (unbalanced). Before you can start the training process, the used
data set must be split into a training and a validation data set. As a ratio 80% training and 20%
validation data was chosen (11,913 images versus 2,953 images). The class with the smallest image
set is french_fries and contains 36 training images and 8 validation images. The class with the
largest image set is grilled_cheese_sandwich and contains over 390 images in the training data
set and over 97 images in the validation data set. On average, all classes contain about 240 training
data and 60 test data (see Figure A.1 for details). An additional test data set is not used in this thesis
(see chapter “Training, validation and test data set”).

4.4.3 Default setup

With the exception of the CNN model tests, all tests were based on the following parameters
(whereby one value of the parameters varied depending on the chapter):

• model: InceptionV3

• learning rate: 0,001 (decreases every 7 epochs to 50% of the previous value)

• epochs: 21 (the learning rate η from epoch 15 to 21 is 0.00025)

• image size: 299x299 pixels70

69The Most Popular Language For Machine Learning Is ... (IT Best Kept Secret Is Optimization). en. CT904. Library Catalog:
www.ibm.com. Aug. 2015. url: www.ibm.com/developerworks/community/blogs/jfp/entry/what_language_is_best_
for_machine_learning_and_data_science (visited on 02/25/2020).

70The original image is reduced to 299 pixels. If it is not a square image, the larger side is scaled down to 299 pixels.

19

www.ibm.com/developerworks/community/blogs/jfp/entry/what_language_is_best_for_machine_learning_and_data_science
www.ibm.com/developerworks/community/blogs/jfp/entry/what_language_is_best_for_machine_learning_and_data_science

• batch size: 16

• drop out: 50%

• CNN weights: ImageNet (TL)

• activation function: rectified linear unit (ReLU)

• optimizer: stochastic gradient descent (SGD) with Nesterov

• momentum: 0.9 (with decay 0.0)

• training of all CNN layers (unless otherwise specified)

• the entire training and validation set (14,866 images - unless otherwise specified)

Different models were tried out in chapter “Comparison of different CNN models” with the same
parameters as above: DenseNet121, DenseNet201, InceptionResNetV2, InceptionV3, NASNetLarge,
ResNet50, VGG19 and Xception

20

5 Results

In this part of the thesis the investigations and the corresponding evaluations will be presented.
For each chapter models with the given parameters and techniques have been created with which
image classifications can be performed. The models have to be trained, whereby a decision has
to be made on many variable parameters like the learning rate η, the optimizers, but also things
such as the CNN model. The basis is a standard setup, which was explained in chapter “Default
setup”. Starting from this standard setup, the variable parameters are changed and discussed in the
corresponding chapters. The purpose is to find the parameters with which the recognition accuracy
of the models is high.

5.1 Model validation

5.1.1 Influence of number of trained images on accuracy

The first question that comes up: What influence does the amount of data to be trained have on the
accuracy of the model? For this purpose, the standard setup from the chapter “Default setup” is
used and the model is trained with a different number of training data. While the validation data
set always stays the same, the total number of data to be trained is increased from 500 data elements
to the total number of 11,913. Since this is an unbalanced data set, the number remains the same in
each class in percentage terms. Only the total number is changed to the corresponding values: 500,
1,000, 2,000, etc. (Figure 15).

0 s 3600 s 7200 s 10800 s

model training time

20%

40%

60%

80%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

InceptionV3; 21 epochs; min. 00:17:45; max 02:30:20

00500 (45.76% - 00:17:45)
01000 (61.42% - 00:23:24)
02000 (70.72% - 00:34:54)
05000 (78.41% - 01:09:35)
08000 (81.24% - 01:44:32)
11913 (83.59% - 02:30:20)

Figure 15: Overview of influence of number of trained images on accuracy

As expected, the number of images to be trained has a significant influence on the model
accuracy. While with 500 images an accuracy of 45.76% can be achieved, with almost 12,000 images
it is already 83.59% after 21 epochs. With every increase in the number of images, an improvement
in accuracy can be observed. The improvement in accuracy is not linear with an increase in training
data elements. Although the accuracy in the upper range (more than 5,000 images) still seems to
increase, the jumps are not very big anymore and seem to be moving to a limit. For further research
one could still find out from which number of training data elements no further significant increase
in accuracy is possible. Since no further data was available in this data set, this thesis will not be
pursued further here.

Another interesting point is the fact that increasing the training data can theoretically save
computing time. The example with a data set of 11,913 images (light blue trace) reaches an accuracy
of 68.1% after six and a half minutes of training already in the first epoch. With 1,000 images (orange
trace), the maximum accuracy is 61.42% after 18 epochs and about 20 minutes computing time. In
this case, a significantly too small data set does not reach the model accuracy that a data set about
ten times as large reaches with the first epoch and less time.

21

5.1.2 Comparison of different CNN models

There are currently many CNN models and each year with the annual ImageNet competition new
models with better accuracy are released. These models are trained with the ImageNet data set and
the results are compared using this data set. What is the result with smaller data sets? The training
result according to the standard setup and with different CNN models of eight models is as follows
(Figure 16).

0 s 3600 s 7200 s 10800 s 14400 s 18000 s 21600 s 25200 s

model training time

20%

40%

60%

80%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

21 epochs; min. 02:03:20; max 27:59:44

DenseNet121 @ bs=16 (83.08% - 02:16:41)
DenseNet201 @ bs=8 (84.58% - 05:12:15)
InceptionResNetV2 @ bs=16 (80.42% - 03:22:30)
InceptionV3 @ bs=16 (83.59% - 02:30:20)
NASNetLarge @ bs=4 (83.76% - 27:59:44)
ResNet50 @ bs=16 (81.21% - 02:03:20)
VGG19 @ bs=16 (75.55% - 02:13:18)
Xception @ bs=16 (77.29% - 02:55:20)

Figure 16: Overview of known CNN models

All models except DenseNet201 and NASNetLargewere trained with a batch size of 16 (bs = 16).
Due to the limited 6 Gbyte memory of the Nvidia GTX 106071, DenseNet201was trained with a batch
size of 8 (bs = 8) and NASNetLarge with a batch size of 4 (bs = 4). A real comparison of these two
exceptions is not really possible, but should not be omitted at this point. A smaller batch size value
is associated with increased computing time and slower increase in accuracy (see chapter “Different
batch sizes”). A comparison with Figure 14 (“Overview of current and known convolutional neural
networks”) shows similar accuracies and required computing time: The best model was achieved
with DenseNet201 with an accuracy of 84.58% and a batch size of 8. The model with the lowest
accuracy is the somewhat older model called VGG19 with 75.55%. If one compares the computing
time and the accuracies to be achieved, one notices the InceptionV3 model (red trace). It is the
second best model and reaches the result in an average time of about two and a half hours.. The best
model DenseNet201 needs more than twice as much time for its result. The choice for all further
experiments is therefore the CNN model InceptionV3, because it achieves a good result within a
comparatively short period of time.

5.1.3 Use of the transfer learning (TL) approach

What influence does the use of transfer learning have on accuracy? As described in the chapter
“Transfer learning”, the TL approach immediately improves accuracy because the model already
has recognition features that an unlearned network has yet to learn. The approach is applied to
the data set food-50. For the first time, not only the validation accuracy (thick trace) but also the
training accuracy (thin trace) is drawn in.

71GeForce 10 series. en. Page Version ID: 943820023. Mar. 2020. URL: https://en.wikipedia.org/w/index.php?title=
GeForce_10_series&oldid=943820023 (visited on 03/07/2020)

22

https://en.wikipedia.org/w/index.php?title=GeForce_10_series&oldid=943820023
https://en.wikipedia.org/w/index.php?title=GeForce_10_series&oldid=943820023

0 s 3600 s 7200 s 10800 s

model training time

0%

20%

40%

60%

80%

100%

ac
cu

ra
cy

va
lid

at
io

n
an

d
tr

ai
ni

ng
to

p-
1 InceptionV3; 21 epochs; min. 02:30:19; max 02:30:20

w/ TL - ImageNet (83.59% - 02:30:20) (Validation)
w/ TL - ImageNet (99.57% - 02:30:20) (Training)
w/o TL (38.24% - 02:30:19) (Validation)
w/o TL (58.79% - 02:30:19) (Training)

Figure 17: Overview of use of the TL approach

As expected, the model with the TL approach achieves a better result in the same computing
time (blue trace versus orange trace). In the first epoch the model without transfer learning
approach reaches an accuracy value of 8.5% and increases to 38.2% in 21 learning epochs. The
training accuracy of 58.8% is still far below the values achieved with TL after a few epochs. This
means that learning of features can be continued theoretically with the existing data set (see chapter
“Overfitting und underfitting”). If one starts with a pre-trained network, an accuracy value of 68.9%
is achieved in the first epoch. This is an improvement of 30% as the current best value without
TL approach. The accuracy can be further increased to 83.6% in the 21st epoch. What happens
now, if the data set without TL approach is trained with 49 epochs instead of the 21 epochs used
so far? Two experiments follow: The first experiment (green trace) uses a dropout of dropout = 0.5
as before from the default setup (orange trace). In the second experiment (red trace), a dropout of
dropout = 0.0 is used to force an overfitting and focus on learning the recognition features (Figure
18).

0 s 3600 s 7200 s 10800 s 14400 s 18000 s 21600 s

model training time

0%

20%

40%

60%

80%

100%

ac
cu

ra
cy

va
lid

at
io

n
an

d
tr

ai
ni

ng
to

p-
1 InceptionV3; 49 epochs; min. 05:47:03; max 05:50:04

w/o TL, ep. 49, dropout=0.5 (47.29% - 05:48:14) (validation)
w/o TL, ep. 49, dropout=0.5 (97.56% - 05:48:14) (training)
w/o TL, ep. 49, dropout=0.0 (48.18% - 05:50:04) (validation)
w/o TL, ep. 49, dropout=0.0 (99.59% - 05:50:04) (training)

Figure 18: Overview of training without TL approach

With further 28 learning epochs, the model accuracy was again increased to 10% in both
experiments. Especially with a dropout of dropout = 0.0 an accuracy of 48.2% could be achieved
(still below the value with TL approach), whereas the training accuracy has already reached 99.59%
and a further generalization is theoretically no longer possible. In order to make further progress
and to achieve better accuracies on previously unseen images, more images are needed to learn

23

features. Conclusion: For the training of approaches without TL the currently available image set
is no longer sufficient to achieve better or the same values as with TL approaches. Especially when
using small data sets, the TL approach should be considered.

5.1.4 Influence of the number of trained layers on the accuracy

A pre-trained network has a decisive influence on the accuracy that can be achieved in a certain
computing time. With increasing depth of the layers of a CNN model, the associated filters have
learned more and more complex recognition features72. In the first layers, the filters learn basic
shapes to recognize features such as edges and corners. The middle layers learn to recognize parts
of objects. The last layers learn complete objects in different shapes and positions. The question
that immediately comes up: Is it necessary to relearn the lower layers or is it possible to omit them
to save computing time? This will be tested in the following experiment (Figure 19).

0 s 3600 s 7200 s 10800 s

model training time

30%

40%

50%

60%

70%

80%

90%

100%

ac
cu

ra
cy

va
lid

at
io

n
an

d
tr

ai
ni

ng
to

p-
1 InceptionV3; 21 epochs; min. 01:02:07; max 02:30:20

36 layers trained (64.79% - 01:02:07) (validation)
36 layers trained (93.20% - 01:02:07) (training)
119 layers trained (73.44% - 01:22:47) (validation)
119 layers trained (99.01% - 01:22:47) (training)
215 layers trained (78.99% - 01:47:21) (validation)
215 layers trained (99.18% - 01:47:21) (training)
315 layers trained (83.59% - 02:30:20) (validation)
315 layers trained (99.57% - 02:30:20) (training)

Figure 19: Overview of influence of the number of trained layers

Skipping the training of layers in the convolutional part of the network immediately reduces
the model accuracy significantly. One can save a lot of computing time if one only trains the last
36 levels (about one hour of computing time compared to two and a half hours if one trains all
315 levels), but the accuracy of the model increases steadily with the training of additional layers.
The model accuracy could be improved from 64.8% to 83.6% when training all 315 layers from the
InceptionV3 CNN. The extra computing time required to train all layers in the convolutional part
should be scheduled.

5.1.5 Influence of different error optimizers

The optimizer in the training process is used to minimize the value of the loss function. This is an
attempt to reflect the value of the predictions as correctly as possible. The value of the loss function
is the difference between the expected value and the estimated value of the classification function.
The simplest approach is the gradient descent algorithm73, which has been improved over time and
further optimization algorithms have been developed. The learning rate η determines the value of
the weighting with which the error is corrected (see also chapter “Loss function”). The recalculated

72Advanced Topics in Deep Convolutional Neural Networks, https://towardsdatascience.com, February 22, 2020, https:
//towardsdatascience.com/advanced-topics-in-deep-convolutional-neural-networks-71ef1190522d

73Gradient descent. en. Page Version ID: 943737051. Mar. 2020. URL: https://en.wikipedia.org/w/index.php?title=
Gradient_descent&oldid=943737051 (visited on 03/07/2020)

24

https://towardsdatascience.com/advanced-topics-in-deep-convolutional-neural-networks-71ef1190522d
https://towardsdatascience.com/advanced-topics-in-deep-convolutional-neural-networks-71ef1190522d
https://en.wikipedia.org/w/index.php?title=Gradient_descent&oldid=943737051
https://en.wikipedia.org/w/index.php?title=Gradient_descent&oldid=943737051

probability vector λnew is passed back to the backpropagation algorithm:

λnew = λcurrent − η · L(ϑ,λcurrent) (13)

This area deals with the topic of optimizers and their parameters (especially the learning rate η)
and what decisive influence they have on the accuracy of the model.

5.1.5.1 Comparison optimizer

In addition to the gradient descent algorithm, there are a lot of other methods which are intended
to improve the descent to the optimum. For example, techniques are used which, together with the
learning rate, should optimize the convergence74. Below is a comparison of current optimization
methods (Figure 20).

0 s 3600 s 7200 s 10800 s

model training time

0%

20%

40%

60%

80%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

InceptionV3; 21 epochs; min. 02:27:04; max 02:50:49

adadelta (51.28% - 02:50:49)
adagrad (82.02% - 02:34:15)
adam (39.12% - 02:42:20)
rmsprop (19.54% - 02:36:59)
sgd with nesterov (83.59% - 02:30:20)
sgd without nesterov (83.35% - 02:27:04)

Figure 20: Overview of best optimizer (validation)

As one can see, the results are very different. While the gradient descent method with and
without Nesterov and the Adagrad method provide good values (82.0% to 83.6% accuracy), the
other methods do not look very useful at first sight. They converge very slowly: Adadelta, Adam
and RMSprop (see also training validation in Figure 21).

74A Look at Gradient Descent and RMSprop Optimizers, https://towardsdatascience.com, February 22, 2020, https:
//towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b

25

https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b
https://towardsdatascience.com/a-look-at-gradient-descent-and-rmsprop-optimizers-f77d483ef08b

0 s 3600 s 7200 s 10800 s

model training time

0%

20%

40%

60%

80%

100%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

InceptionV3; 21 epochs; min. 02:27:04; max 02:50:49

adadelta (40.15% - 02:50:49) (training)
adagrad (98.42% - 02:34:15) (training)
adam (39.79% - 02:42:20) (training)
rmsprop (18.48% - 02:36:59) (training)
sgd with nesterov (99.57% - 02:30:20) (training)
sgd without nesterov (99.51% - 02:27:04) (training)

Figure 21: Overview of best optimizer (training)

All procedures were performed with the recommended settings according to the Keras docu-
mentation75. A learning rate of η = 0.001 was chosen for all procedures.

5.1.5.2 Influence of the momentum and the Nesterov momentum

The two best methods from the previous chapter “Comparison optimizer” SGD with Nesterov
and SGD without Nesterov will be examined here in more detail. This time, the focus is on the
momentum, which is specified as 0.9 in the standard setup. In contrast to the simple SGD method,
the momentum method remembers the value of the last update of λ and uses the momentum α to
define how high the influence of the last change of λ additionally affects the current change of λ
(Equation 14). The update is "accelerated" in the direction in which the error correction is obviously
currently moving (Equation 15).

∇λnew = α · ∇λold − η · L(ϑ,λcurrent) (14)

λnew = λcurrent + ∇λnew (15)

The Nesterov momentum is a simple modification of the normal momentum. The calculation
of the error function is no longer based only on the current value of λ, but also includes the current
change by the momentum (equation 16). This should help to correct directional changes faster and
avoid overshoots.

λnew = λcurrent + α · ∇λold − η · L(ϑ,λcurrent + α · ∇λold) (16)

In the next two experiment, the momentum is varied from 0.5 to the range of 0.98 (Figure
23). The learning rate starts at 0.001 and decreases by 50% after every seven epochs. The first
experiment starts without the Nesterov momentum (Figure 22), the second experiment uses the
Nesterov momentum method (Figure 23). The results will then be compared and discussed.

75Usage of optimizers, https://keras.io, February 22, 2020, https://keras.io/optimizers/

26

https://keras.io/optimizers/

0 s 3600 s 7200 s 10800 s

model training time

40%

50%

60%

70%

80%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

InceptionV3; 21 epochs; min. 02:24:20; max 02:27:13

momentum=0.5, w/o nest. (81.07% - 02:27:13)
momentum=0.7, w/o nest. (81.51% - 02:24:20)
momentum=0.8, w/o nest. (81.85% - 02:24:48)
momentum=0.9, w/o nest. (83.35% - 02:27:04)
momentum=0.95, w/o nest. (83.32% - 02:27:04)
momentum=0.98, w/o nest. (81.78% - 02:26:53)

Figure 22: Overview of experiments of different momentum values without Nesterov
(momentum =̂ α)

0 s 3600 s 7200 s 10800 s

model training time

40%

50%

60%

70%

80%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

InceptionV3; 21 epochs; min. 02:28:50; max 02:30:20

momentum=0.5, w/ nest. (81.31% - 02:29:23)
momentum=0.7, w/ nest. (81.92% - 02:29:58)
momentum=0.8, w/ nest. (82.16% - 02:29:34)
momentum=0.9, w/ nest. (83.59% - 02:30:20)
momentum=0.95, w/ nest. (84.37% - 02:29:20)
momentum=0.98, w/ nest. (81.48% - 02:28:50)

Figure 23: Overview of experiments of different momentum values with Nesterov (momentum =̂ α)

The accuracy of both experiments with (w/ nest.) and without Nesterov (w/o nest.) increases
steadily with momentum α until they reach their zenith at 83.35% and 84.37% with α = 0, 9 (w/o
nest.) and α = 0, 95 (w/ nest.) respectively. It is noticeable that the smaller the momentum α, the
accuracy increases more evenly, but the “maximum” at 21 epochs is not reached. With increasing
momentum, e.g. at the maximum of α = 0, 98 for the Nesterov model (light blue trace), the model
accuracies jump and can sometimes run completely in the negative direction with another epoch.
With the best model (purple trace, w/ nest., α = 0.95) exactly the same happens, but in the end the
best results are achieved.

5.1.5.3 Influence of a dynamic learning rate on accuracy (scheduling)

The learning rate η indicates how much of the error is returned to the model (step size). After
a certain number of learning epochs, the model accuracy does not increase any more but jumps
around a value (see green trace in the following figure), because the optimum cannot be achieved
due to a too large step size in error correction. It is therefore a good idea to adjust and reduce the
step size step by step over the epochs. For this purpose the learning rate η is adjusted after a certain

27

number of epochs Ewith the momentum β. The value for η1 corresponds to the initial value for the
learning rate:

ηm→next = β · ηm, m ∈ [1 + 0 · E, 1 + 1 · E, 1 + 2 · E, . . .] (17)

0 s 3600 s 7200 s 10800 s

model training time

70%

72%

74%

76%

78%

80%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

InceptionV3; 21 epochs; min. 02:28:58; max 02:30:20

beta=0.1 @ 7 epochs (83.04% - 02:29:51)
beta=0.5 @ 7 epochs (83.59% - 02:30:20)
no scheduling (beta=1) (82.19% - 02:28:58)

Figure 24: Overview of a dynamic learning rate on accuracy

As suspected, a reduction of the learning rate over time improves the possible model accuracy
(Figure 24). However, it must not be reduced too much, as this would limit the further learning
possibilities too much. While a momentum of β = 0.5 still provides a model accuracy of 83.6%, this
decreases to 83.0% at β = 0.1. A static learning rate does not improve the learning ability from about
the 8th epoch onwards. It then jumps around the value of 81% and even seems to worsen a little.
Momentum belongs to the group of hyperparameters76 and must be determined experimentally.
An empirical value can be used as a starting value.

5.1.6 Different batch sizes

The batch size is one of the regularization parameters, since it can counteract overfitting. As
described in the chapter “Batch Size” the learning process should be divided into several smaller
mini-batches. The question in this evaluation is how different sizes of batch size affect the accuracy
of the model. In a paper by Pavlo M. Radiuk from 2017, the highest possible batch size of 1,024
provided the best accuracy and helped to avoid a high degree of variance. However, Pavlo M.
Radiuk also found that the improvements in accuracy in high ranges were only very small.77 It
should also be mentioned that his data set consisted of 60,000 images distributed in 10 classes
(compared to 50 classes with about 250 images per class in this thesis) and he used very small
images (32x32 pixels) to allow a high value of batch size. The different batch size sizes are also
applied to the food-50 data set (Figure 25). A batch size higher than 32 could not be used due to
technical reasons.

76Hyperparameter optimization, Wikipedia contributors, February 22, 2020, https://en.wikipedia.org/wiki/
Hyperparameter_optimization

77Pavlo M Radiuk. “Impact of training set batch size on the performance of convolutional neural networks for diverse
datasets”. In: Information Technology and Management Science 20.1 (2017), pp. 20–24. url: https://www.degruyter.com/
downloadpdf/j/itms.2017.20.issue-1/itms-2017-0003/itms-2017-0003.pdf.

28

https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://en.wikipedia.org/wiki/Hyperparameter_optimization
https://www.degruyter.com/downloadpdf/j/itms.2017.20.issue-1/itms-2017-0003/itms-2017-0003.pdf
https://www.degruyter.com/downloadpdf/j/itms.2017.20.issue-1/itms-2017-0003/itms-2017-0003.pdf

0 s 3600 s 7200 s 10800 s 14400 s 18000 s 21600 s 25200 s 28800 s 32400 s

model training time

20%

40%

60%

80%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

21 epochs; min. 02:02:59; max 08:23:14

batch_size=02 (67.13% - 08:23:14) (validation)
batch_size=04 (79.11% - 04:59:07) (validation)
batch_size=08 (82.82% - 03:23:55) (validation)
batch_size=16 (83.52% - 02:29:43) (validation)
batch_size=24 (83.10% - 02:12:59) (validation)
batch_size=32 (82.30% - 02:02:59) (validation)

Figure 25: Overview of the influence of a different batch size (validation)

0 s 3600 s 7200 s 10800 s 14400 s 18000 s 21600 s 25200 s 28800 s 32400 s

model training time

20%

40%

60%

80%

100%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

21 epochs; min. 02:02:59; max 08:23:14

batch_size=02 (96.45% - 08:23:14) (training)
batch_size=04 (97.75% - 04:59:07) (training)
batch_size=08 (98.84% - 03:23:55) (training)
batch_size=16 (99.34% - 02:29:43) (training)
batch_size=24 (99.54% - 02:12:59) (training)
batch_size=32 (99.54% - 02:02:59) (training)

Figure 26: Overview of the influence of a different batch size (training)

A higher batch size value obviously leads to a faster and more predictable (more even) increase
in validation accuracy in the first epochs (light blue trace with batch_size = 32), compared to a batch
size of 16 (red trace), for example, where the accuracy “jumps” from epoch two to seven. However,
a higher batch size does not give the best result at the end of the 21 epochs. While a value of 16
for the batch size achieves an accuracy of 83.52%, it only achieves 82.54% with a value of 32. Up to
a batch size of 16, however, it can be said that as the batch size increases, a better result is always
achieved. Increasing the batch size reduces the required computing time as expected. In this case,
it has been improved from eight hours to two hours. Overfitting is achieved very slowly with a
batch size of 2, but this model is also the worst one with a detection accuracy of 67.13%. The much
faster increasing training accuracy up to 100% with increasing batch size can be seen very clearly
in Figure 26. The batch size is in this case also a HP, which must be defined before the training and
determined experimentally for optimal values. Investigations with a slightly more balanced data
set and an even higher batch size should be aimed at to further investigate the influence of batch
size on different data sets.

29

5.1.7 Different activation functions

The activation function ensures that the linear classification function becomes a non-linear function
(see chapter “Artificial neural network”) and with its help it is possible to create the classification
space for image classifications..78 There are a lot of different activation functions, which differ a
little bit in their manner. The influence on the model accuracy to be achieved by these different
activation functions is shown in Figure 27.

0 s 3600 s 7200 s 10800 s

model training time

50%

55%

60%

65%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

21 epochs; min. 02:29:20; max 02:30:28

elu (83.18% - 02:30:28)
hard_sigmoid (81.65% - 02:29:29)
relu (83.52% - 02:29:43)
selu (83.11% - 02:30:01)
sigmoid (81.92% - 02:29:20)
tanh (82.81% - 02:29:32)

Figure 27: Overview of the influence of difference activation functions

The model accuracies to be achieved are very similar in the result. Nevertheless, there are small
differences. The sigmoid function, as well as the activation function “Hard sigmoid” converge more
slowly to the maximum possible model accuracy. The other four activation functions converge faster
and are further ahead with about 20% more model accuracy in the first epoch. They do not differ
very much in their results. The best result is achieved by the activation function “ReLU” with
83.52%.

5.1.8 Different number of learned epochs

All experiments performed here so far have been carried out with 21 learning epochs, whereby the
learning rate dropped from 0.001 to 0.0025. The validation accuracies at the end of the training
processes were mostly over 99% (see for example Figure 25, batch_size = 16) which indicates
overfitting and theoretically no further improvements are possible. It will now be examined what
happens if one trains over the 21 learning epochs with further decreasing learning rates η. SGD
with Nesterov is used as optimizer. Once with 0.9 and once with the best value 0.95 from chapter
“Influence of the momentum and the Nesterov momentum” (Figure 28).

78Aktivierungsfunktionen, ihre Arten und Verwendungsmöglichkeiten.

30

0 s 3600 s 7200 s 10800 s 14400 s 18000 s 21600 s

model training time

65%

70%

75%

80%

ac
cu

ra
cy

va
lid

at
io

n
an

d
tr

ai
ni

ng
to

p-
1

21
LE

29
LE

44
LE

InceptionV3; 49 epochs; min. 05:47:40; max 05:49:40

49 epochs, momentum=0.90 (83.49% - 05:47:40) (Validation)
49 epochs, momentum=0.90 (99.57% - 05:47:40) (Training)
49 epochs, momentum=0.95 (84.00% - 05:49:40) (Validation)
49 epochs, momentum=0.95 (99.66% - 05:49:40) (Training)

Figure 28: Overview of the influence of a longer training period with more epochs

As suspected, there is no significant improvement after 21 learning periods. The best result
until the 21st learning epoch was achieved after the 21st epoch (momentum = 0.9, 83.04%) and after
the 19th epoch (momentum = 0.95, 83.55%). This could then be improved in the 29th epoch to 83.49%
(momentum = 0.9) and in the 44th epoch to 84.00% (momentum = 0.95). Conclusion: Increases are
still possible, but an improvement of about 0.5% requires a doubling of the computing time.

5.1.9 Influence of dropout

The dropout parameter also belongs to the regularization parameter group. It also helps to avoid
overfitting, in which individual neurons in the NN are randomly deactivated and do not contribute
to training without affecting the rest of the model. This means that not all features are learned at
once, but only some of them. In Figure 29 the results of different dropout values are compared. The
dropout layer is used after the CNN within the connected neural network (for an example code see
Listing A.1 in the appendix).

0 s 3600 s 7200 s 10800 s

model training time

40%

50%

60%

70%

80%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

21 epochs; min. 02:29:34; max 02:31:03

dropout=0.00 (83.49% - 02:29:38) (validation)
dropout=0.25 (82.60% - 02:29:45) (validation)
dropout=0.50 (83.52% - 02:29:43) (validation)
dropout=0.75 (83.28% - 02:31:03) (validation)
dropout=0.90 (81.85% - 02:29:34) (validation)

Figure 29: Overview of the dropout parameter (validation)

31

0 s 3600 s 7200 s 10800 s

model training time

20%

40%

60%

80%

100%

ac
cu

ra
cy

va
lid

at
io

n
to

p-
1

21 epochs; min. 02:29:34; max 02:31:03

dropout=0.00 (99.47% - 02:29:38) (training)
dropout=0.25 (99.45% - 02:29:45) (training)
dropout=0.50 (99.34% - 02:29:43) (training)
dropout=0.75 (99.24% - 02:31:03) (training)
dropout=0.90 (96.46% - 02:29:34) (training)

Figure 30: Overview of the dropout parameter (training)

As one can see the dropout technique helps to avoid overfitting. The higher the dropout
value, the slower the training accuracy value increases. The best result with the same computing
time of all experiments is obtained with a dropout value of 0.5 which reaches a model accuracy of
83.52%. Beyond that and below the model accuracy decreases again slightly with one exception:
In the experiment without dropout (dropout = 0.0) a model accuracy of 83.49% is achieved in the
15th epoch. Compared to the best result, this result differs only minimally (by 0.03%). This result
is interesting and should be investigated further. The assumption is that higher dropout values
require longer training times and that the experiment quickly reached a maximum without dropout.
Especially with a dropout value of 0.9 it is probable that with more training epochs an even better
value can be determined. Conclusion: With current CNNs it is obviously not necessary to use the
regularization technique dropout with equal computing time. Even without dropout you get the
highest model accuracy. However, the experiment should be repeated with further training data
sets.

5.2 Optimization process

In addition to hyperparameters (or tuning parameters), there are a number of other techniques that
influence model accuracy. It should be mentioned, for example, the problem in chapter “Influence of
number of trained images on accuracy”, where the model accuracy could not be further investigated
with more than the existing 12,000 images due to missing data, although the accuracy seemed to
increase even more. Or the problem with the unbalanced data set. Wouldn’t it be an idea to have
the same amount of data in all classes without having to discard data or get additional data? What
about other classification ideas? Currently, one model is used for all classes. Do hierarchies make
sense? All these things will be examined in the following chapters.

As in chapter “Model validation”, the same settings are used as the default setup, unless
otherwise specified. InceptionV3 is used as CNN. The data set and also the division into training
and validation data set corresponds to the procedure of the previous chapters.

5.2.1 Comparison of different neural network types

This chapter deals with the last layers at the end of the network. The CNN network at the
end is usually completed with one or more layers of “normal” fully connected neurons (DL / fully
connected layer, see chapter “Convolutional neural network”). These layers translate the properties
from the convolutional part of the network into the class accuracies (see chapter “Loss function”).
So far in all experiments this layer was a simple network, where a dropout layer followed by a
softmax layer with size 50 was connected. What happens if you replace these layers with more
complex or even simpler layers? (Figure 31)

32

0 s 3600 s 7200 s 10800 s

model training time

65%

70%

75%

80%
ac

cu
ra

cy
va

lid
at

io
n

to
p-

1

21 epochs; min. 02:28:43; max 02:29:34

dropout layer -> DL(50) (default) (83.04% - 02:29:00)
dropout layer -> DL(512) -> DL(50) (82.60% - 02:29:34)
dropout layer -> DL(512) -> DL(256) -> DL(50) (83.42% - 02:29:27)
DL(512) -> dropout layer -> DL(50) (82.53% - 02:29:24)
DL(50) (without a dropout layer) (83.52% - 02:28:43)

Figure 31: Comparison of different neural network types

In an article entitled “Impact of Fully Connected Layers on Performance of Convolutional
Neural Networks for Image Classification79” one came to the conclusion that especially deep CNNs
need less deep fully connected layers (FCLs) at the end to achieve good results. This could be
confirmed with this experiment. The best result of 83.52% is achieved by the setup without dropout
layer and only one DL. Otherwise the model accuracies do not differ too much in this experiment.
Surprisingly, the most complex setup achieved the second best result of 83.43%. It consists of a
dropout layer directly after the CNN output and is extended by three more DL afterwards. The
last DL layer returns the probability vector λ. Adding more DLs and even a dropout layer is not
necessary for current CNNs like InceptionV3 for image classification on small data sets.

5.2.2 Data augmentation

As described in chapter “Data augmentation” the main task of data augmentation is to generate
new training data from the existing data. The training data set is artificially augmented in this way.
This technique is one of the regularization techniques, as it can counteract overfitting.80 Below is
an example data set in which the first original image is rotated, mirrored, distorted and the data set
is enlarged from one image to a total number of 12 images (Figure 32).

79basha2020impact.
80Aurélien Géron. “Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Techniken

für intelligente Systeme”. In: O’Reilly Verlag, 2017. Chap. Data Augmentation, pp. 311–312. isbn: 9783960090618.

33

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

0 100 200 300 400 500

0

50

100

150

200

250

300

350

Figure 32: Example of data augmentation (The first image is the original image)

Using this technique, the existing food-50 data set is now adjusted until each class contains
a total number of 1,000 images and the data set is balanced overall. Classes with few data will
receive more artificially adjusted data, classes with a lot of data will receive less. The result is that
the original 11,913 images have now become a total number of 50,000 images and the data set has
grown from 765 Mbyte to 1.78 Gbyte. The validation data set remains unchanged in order not to
falsify the test result. The evaluation diagram is shown below (Figure 33).

0 s 3600 s 7200 s 10800 s 14400 s 18000 s 21600 s 25200 s 28800 s 32400 s 36000 s

model training time

70%

75%

80%

85%

90%

95%

100%

ac
cu

ra
cy

va
lid

at
io

n
an

d
tr

ai
ni

ng
to

p-
1 InceptionV3; 21 epochs; min. 02:30:20; max 09:41:44

data augmentation 1000 (85.60% - 09:41:44) (validation)
data augmentation 1000 (99.81% - 09:41:44) (training)
without data augmentation (83.59% - 02:30:20) (validation)
without data augmentation (99.57% - 02:30:20) (training)

Figure 33: Comparison of data augmentation

The model accuracy increases from 83.6% to 85.6% and shows an overall increase of 2%. While
the calculation of the data set without data augmentation takes only two and a half hours, the new
data set takes four times as long. Conclusion: Data Augmentation is associated with improved
accuracy, but also requires more computing time. If computing time is not important, this is one
way to improve the accuracy a little. It should be mentioned that the data set was balanced with data
augmentation. That means that there were the same number of elements for training in each class.
At this point, it is not clear to say whether this improvement could only be achieved by increasing
the available data or whether balancing the data set did also contribute the improvement. This
should be investigated in further experiments.

34

5.2.3 Hierarchical classification

By using a single model for all classes, previous classifiers have been trained to minimize the loss of
the class output vector. Each class used so far has the same rank in both training and classification.
The prediction of "pizza" costs the same as the prediction of "martini".

The human ability to classify objects does not only work on one level. Categories will naturally
overlap and have a hierarchical structure. For example, a human will classify a picture under
"pizza", "tuna pizza" or even "fast food", which is correct from this point of view. Depending on
the classification, there will only be a "loss of information". However, a person will not mistake a
"pizza" as a "martini", which is more likely to be classified as a "drink" or "cocktail".81

In order to find out whether a pre-classification improves the result, the classes are divided
into groups. The idea is that no longer one model predicts all classes, but rather the images are
pre-sorted into a group. The corresponding group then carries out the actual classification. For this
purpose, a principal component analysis is performed to analyze the similarity of the classes from
the food-50 training data set. The result will then be used to create groups. In preparation, a model
will again be trained for all classes: InceptionV3, 21 epochs, batch size 16, learning rate η = 0.001
decreasing by factor 0.5 every seven epochs. Using this model, a prediction is made of all training
and validation data and the probability vectors are determined:

λclassm =


p1
p2
...

p50


∣∣∣∣∣∣ 50∑

i=1

pi = 1 (18)

From these probability vectors, an average vector of all n elements is calculated for each class,
which really belongs to the respective class. For this 50 class model, 50 class vectors with the
dimension of 50 are obtained.:

∀ 50 classes,m = 1 . . . 50 : λclassm =
1
n
·

n∑
i=1

λclassm (19)

Principal component analysis is used to transform these multidimensional vectors into a two-
dimensional space in order to display them visually (Figure 34).

81Eleanor Rosch et al. “Basic objects in natural categories”. In: Cognitive psychology: Key readings 448 (2004).

35

-3 -2 -1 0 1 2 3 4

-1

0

1

2

3

brownies

bundt_cake

buttermilk_biscuits

cheesecake

chicken_wings

cinnamon_roll

donut

granola_bar

guacamole

ice_cream

key_lime_pie

margarita

martini

mashed_potatoes

muffin

popcorn

sloppy_joe

smoothie

-0.4 -0.2 0.0 0.2 0.4 0.6

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

baked_salmon

beef_stroganoff

burger

burrito

caesar_salad

calzone

cobb_salad

coleslaw

corn_dog

creamed_spinachfrench_fries

frittata

grilled_cheese_sandwich

guacamole

kebabs

lasagne

macaroni_and_cheese

meatloaf

nachos

pancakes

pizza

popcorn

quesadilla

salad

sloppy_joe

soup

spaghetti

stuffed_pepper

Figure 34: Principal component analysis of the food-50model. The x and y axis stand for the space
and the similarity between the classes. A more detailed and complete version can be found in the
appendix (Figure A.2).

As expected, one can now immediately recognize similar classes: drinks (orange), cakes (blue)
and salads (green). In the following two chapters, the model accuracies for the pre-classification as
well as the subclasses are determined as usual. In order to determine the overall accuracy of the
models, this would have to be done manually one at a time, since classification using subgroups is
not intended. Instead, the overall accuracy is determined statistically:

âccgroup = accpreclassi f ication · accgroup (20)

acctop−1 =

7∑
group=0

ratio f ilesval,group · âccgroup (21)

5.2.3.1 k-means clustering

All 50 vectors λ of the equation (19) are now examined by k-means clustering. The purpose of k-
means is to divide the data set into k partitions in such a way that the sum of the squared deviations
from the cluster centers is minimal.82 Eight groups are now clustered (k = 8). The distribution is
shown in Table 1. A more detailed version with all class names can be found in Table A.3 in the
appendix. There is also a visual representation (Figure A.2).

The classes from the data set food-50were distributed in unbalanced groups. The group group0
contains 18 classes in total. This corresponds to 31.1% of the entire data set. The group group4
contains only one class with 63 files, which is 2.1% of the entire data set. With this distribution,
nine training and validation data sets are now created. The first data set contains the training
and validation data for the pre-classification model. This consists of eight new classes (group0 to
group7). Each of these new classes contains all elements of the groups assigned to it (baked_beans,
etc.). The other eight data sets are trained for models that will classify the subclasses. In each of
these data sets, the classes from the data set food-50 are distributed accordingly. For example, the
new class group4 contains only one class named martini. The nine data sets are trained according
to the default setup, which allows to determine the top-1 validation accuracy acc∗ in each case. The

82k-means clustering.

36

Group #classes # f ilesval ratio f ilesval acc* âcc*

preclassification 8 2,953 100.0% 90.02%
group0 18 919 31.1% 83.94% 75.56%
group1 2 158 5.4% 99.30% 89.39%
group2 5 296 10.0% 93.93% 84.56%
group3 1 83 2,8% 100.0% 90.02%
group4 1 63 2,1% 100.0% 90.02%
group5 4 221 7.5% 92.68% 83.43%
group6 12 723 24.5% 81.90% 73.73%
group7 7 490 16.6% 91.77% 82.61%
Overall 50 2,953 100,0% acctop−1 = 79.23%

Table 1: Grouped classes with k-means. *=All accuracies acc are top-1 accuracies.

formula (21) calculates an overall accuracy using the determined accuracies and the distribution of
the files. An overall accuracy of 79.23% was calculated for this model.

5.2.3.2 Agglomerative hierarchical clustering

The agglomerative hierarchical clustering algorithm describes a classification procedure in which
each object first forms a cluster. Clusters that have already been formed will then be combined
to form larger and larger clusters, until the number of desired groups is reached. A detailed
explanation of the procedure and algorithm can be found at Wikipedia.83 It will not be discussed
here in detail. The function AgglomerativeClustering84 from the sklearn library from Python was
used. The parameters n_clusters=8, affinity=‘euclidean’ and linkage=‘ward’were chosen.

The structure and the procedure for determining the model accuracy corresponds almost to the
procedure mentioned in the chapter “k-means clustering”. Only the clustering method is replaced
by the agglomerative hierarchical clustering method, which results in a different distribution of
groups. The distribution can be seen in table 2. A more detailed variant including class names can
be found in the appendix (table A.3). There is also a visual representation of the classes (Figure A.4).
The distribution is very similar this time, but a bit more unbalanced. The group group0 contains 22
groups this time (42.91% of the total distribution). Groups with only one group are also present.
The calculated overall accuracy is 78.60%, which is lesser than in the previous chapter.

Group #classes # f ilesval ratio f ilesval acc* âcc*

preclassification 8 2,953 100.0% 88.93%
group0 22 1,267 42.91% 84.17% 74.85%
group1 5 296 10.02% 93.21% 82.89%
group2 4 249 8.43% 94.85% 84.35%
group3 1 63 2.13% 100.0% 88.93%
group4 2 158 5.35% 99.30% 88.31%
group5 12 677 22.93% 85.63% 76.15%
group6 3 160 5.42% 93.13% 82.82%
group7 1 83 2.81% 100.0% 88.93%
Overall 50 2,953 100,0% acctop−1 = 78.60%

Table 2: Grouped classes with agglomerative hierarchical clustering. *=All accuracies acc are top-1
accuracies.

83Hierarchical clustering.
84sklearn.cluster.AgglomerativeClustering. en. Page Mar. 2020. URL: https://scikit-learn.org/stable/modules/

generated/sklearn.cluster.AgglomerativeClustering.html (visited on 03/08/2020)

37

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html

5.2.3.3 Conclusion of the hierarchical classification

As one can see, the complexity to create both of the above mentioned environments is very high.
Also the computing time is doubled in this case (the groups group0 to group7 together contain the
same data elements as the pre-classifier). Although the approach seemed to be promising, it is not.
The specific accuracy is below average. Performing hierarchical classification for a few groups does
not lead to an improvement. On the contrary, both accuracy has decreased. At this point it should
be mentioned again that the groups were unbalanced. In the future, one could try a clustering
algorithm with equal distribution to see if clustering with equally distributed groups leads to an
improvement.

5.2.4 Binary classifiers

A binary classifier knows only two states. Either a property is true or it is not true. For example, if
one uses a classifier of the class salad to classify an element, this classifier returns the probability
that this image is salad or not (Equation (22)).

λ̂classm =

(
pTrue
pFalse

) ∣∣∣∣∣∣ pTrue + pNegative = 1 (22)

For a binary classification with more than two classes one needs a separate classifier for each
class. For the used data set food-50 in this thesis 50 classification models are created. Each of them is
able to make a statement about the probability that an item to be classified belongs to its class or not.
Although this statement basically corresponds to the statement of a single 50 class classifier used so
far, the recognitions are distributed to individual models here. In theory, this should increase the
Vapnik–Chervonenkis (VC) dimension. The question that now arises: Is it possible to increase the
top-1 model total accuracy by distributing the classification over 50 classifiers?

To answer this question, the existing data set of 50 classes will be modified. For each class
a separate data set is created, which consists of the class “True” and the class “False”. The class
“True” contains all elements of the currently considered class, the class “False” contains all other
elements from all other classes. The result is a set of 50 training and validation data sets (food-50-1
to food-50-50), which are trained individually according to the standard setup. At the end you get
50 classification models for each class. An overview of the result of the individual model accuracies
can be taken from the table A.4 in the appendix. The individual model accuracies appear to look
promising at first view. The worst model accuracy was achieved by the class frittata with an
accuracy of 98.47%. The best model accuracy of 100.00% was achieved by the class french_fries.

The 50 created classifiers are now applied to the training data as well as to the validation data
to obtain λ̂classm . From the obtained probability vectors λ̂classm the “True” value is used to determine
the actual vector (Equation (23) and (24)).

λ∗classm
=


pTrue,class1

pTrue,class2

...
pTrue,class50

 (23)

λclassm =
λ∗classm

‖λ∗classm
‖

(24)

For the data set food-50 one obtains for the training part 11,913 vectors λtrain and for the
validation part 2,953 vectors λval with the dimension 50. Using the k-nearest neighbors classification
algorithm85 the model accuracy is now determined. A class assignment of λval is determined
considering its next k neighbours of λtrain. The resulting model accuracies at different k values are
shown in the following table (Table 3).

85k-nearest neighbors algorithm.

38

k top-1 acc. k top-1 acc. k top-1 acc. k top-1 acc. k top-1 acc.

1 73.42% 2 72.98% 3 74.84% 4 75.18% 5 75.14%
6 75.28% 7 75.35% 8 75.45% 9 75.75% 10 75.65%

11 75.55% 12 75.58% 13 75.58% 14 75.52% 15 75.52%
16 75.52% 17 75.28% 18 75.58% 19 75.45% 20 75.62%

Table 3: Comparison of the model accuracy at different k values.

The best result with a model accuracy of 75.75% was achieved with k = 9. Above or below
this the accuracy decreases. The complexity of building models to create binary classifiers is very
extensive and expensive compared to other methods. It requires 50 times more computing time to
create the models compared to a single model, whereas the model accuracy that can be achieved is
relatively low. For the data set food-50 this experimental setup did not show any improvements.
On the contrary, the result is actually below the expectations. Binary classifications are not well
suited to improve the model accuracy of small data sets.

39

6 Summary and outlook

During this thesis different hyperparameters and techniques for training and validating of image
classifiers were considered and compared. The training was performed with the default settings
from the chapter “Default setup”.

It could be demonstrated that a model accuracy up to 85.60% was achieved with an unbalanced,
manually labelled data set consisting of 11,913 training elements and 2,953 validation elements. This
required up to 10 hours of computing time on a NVIDIA GeForce GTX 1060 with 6 GByte of memory.
With an average of two and a half hours of computing time for 21 training epochs, model accuracies
of up to 83.59% were achieved.

The choice for most experiments is based on the CNN model InceptionV3 (model accuracy
83.59%), although the CNN model Densenet201with 84.58% model accuracy achieves a 1% higher
value with the standard setup (see chapter “Comparison of different CNN models”). However, with
InceptionV3 it was possible to achieve good results with less memory consumption in average time,
while Densenet201works significantly slower. For future investigations and with much more GPU
performance the experiments mentioned here could be repeated with much larger CNN models like
Densenet201. As an idea the GPU parallel computing technology should be mentioned here.86,87

It could also be shown that the accuracy of the model could be permanently improved with
an increasing number of data elements (see chapter “Influence of number of trained images on
accuracy”). It seems that the maximum model accuracy with 11,913 training images has not yet
been reached at the end (see also chapter “Data augmentation”). It should be further investigated
if further increasing data sets will improve the model accuracy and from which point the model
accuracy does not or can not increase any more. Further investigations should also examine the
misclassifications in more detail. Why were these images classified incorrectly? Is it perhaps not
possible to differentiate these images? And should they therefore be removed from the data set?

In this thesis the models were trained with the default settings from the chapter “Default
setup”. It could be shown that many of the hyper parameters and training properties mentioned
there can be used as a basic for the first model to achieve good model accuracy: The number of
learning epochs, the activation function, the training of all CNN layers, the use of the TL approach
and the use of the complete data set. There are exceptions where improvements can be achieved
if they are tried out through comparative training. It should be mentioned that no big jumps are
expected in these parameters compared to the standard setup. Examples are the momentum, the
value for reducing the learning rate during epochs and the batch size. An interesting article about
the hyperparameter batch size from 2018 investigates an interesting approach that could also be
included in future investigations: “Don’t decay the learning rate, increase the batch size”.88

Additionally, optimization techniques were investigated in this thesis. Some of them worked
well within some limits. Other ideas seemed promising at first sight, but in the end they were not.
One of the techniques with potential for improvement is data augmentation (see chapter “Data
augmentation”). Investing more computing time is recommended here to improve the model
accuracy a bit more. If the balanced data set has also influenced the model accuracy, should be
investigated further. It could not be clarified completely. Also in which dimension unbalanced data
sets influence the accuracy of the model is a point that can be included in future investigations.
Current CNNs are good in performing classifications such as images. An implementation of
hierarchical levels or binary classifications is not necessary here, even if it sounds logical at first
sight and the data set, like the data set food-50 used here, consists of only a few classes. It was also
shown that it is sufficient to add a simple DL with the size of the number of classes to be classified
at the end of the CNN. A dropout layer is not necessary.

Image classifications are a hot topic in business and science. The desire for increasingly higher
model accuracies is huge, so many ideas and approaches for improvements are arising here as well.
For instance, how about enriching the data set mentioned here with additional data sets from other
sources, like Flickr or Google? All this together with data augmentation?

86upadhyaya2013parallel.
87cavuoti2013genetic.
88smith2017don.

40

And last but not least, the question arises: “Can we do without the big services like Google and
Microsoft?” In order to be able to answer this question precisely, further research is needed. The
best way to do this is to compare this services with the same validation data set used in this thesis.
The question that needs to be clarified in this investigation: “Do the model accuracies improve
with these public services?” Especially when it comes to the topic of limited domains, such as food
recognition in detail, the question arises whether it is not better to create an own adapted model.
With recognition accuracies of 85.60%, it can be considered to create own models that are adapted
to the specific problem. For example, product classifications, the food classification mentioned
here, or for example data protection relevant topics such as face recognition should be mentioned
here. But always under the one important aspect: Data is an expensive undertaking and should be
obtained with caution and care. Even if in the end it is only a small data set.

41

List of acronyms

acc. accuracy

AI artificial intelligence

API application programming interface

ANN artificial neural network

CNN convolutional neural network

CPU central processing unit

DA data augmentation

DL deep learning

DNN deep neural network

DS data set

FN false negative

FP false positive

FCL fully connected layer

GPU graphics processing unit

HP hyperparameter

ML machine learning

LE learning epochs

NN neural network

ReLU rectified linear unit

RL reinforcement learning

SGD stochastic gradient descent

TD training data

TN true negative

TP true positive

TL transfer learning

VC Vapnik–Chervonenkis

VCD Vapnik–Chervonenkis dimension

VD validation data

42

List of literature

Aktivierungsfunktionen, ihre Arten und Verwendungsmöglichkeiten. de-DE. Library Catalog: www.ai-
united.de Section: Mathematik. Jan. 2019. url: https://www.ai-united.de/aktivierungsfun
ktionen-ihre-arten-und-verwendungsmoeglichkeiten/ (visited on 02/28/2020).

Backpropagation. en. Page Version ID: 939314095. Feb. 2020. url: https://en.wikipedia.org/w/
index.php?title=Backpropagation&oldid=939314095 (visited on 02/25/2020).

Banko, Michele and Eric Brill. “Scaling to very very large corpora for natural language disam-
biguation”. In: Proceedings of the 39th annual meeting on association for computational linguistics.
Association for Computational Linguistics. 2001, pp. 26–33. url: https://www.aclweb.org/
anthology/P01-1005.pdf.

Bing images - Donut. url: https://www.bing.com/images/search?q=donut (visited on 03/01/2020).

Chollet, Francois. “Building powerful image classification models using very little data”. In: Keras
Blog (2016). url: http://deeplearning.lipingyang.org/wp-content/uploads/2016/12/
Building-powerful-image-classification-models-using-very-little-data.pdf.

Confusion matrix. en. Page Version ID: 940280604. Feb. 2020. url: https://en.wikipedia.org/w/
index.php?title=Confusion_matrix&oldid=940280604 (visited on 02/28/2020).

Convolutional neural network. en. Page Version ID: 942501792. Feb. 2020. url: https://en.wikiped
ia.org/w/index.php?title=Convolutional_neural_network&oldid=942501792 (visited on
02/25/2020).

De Mantaras, Ramon Lopez and Eva Armengol. “Machine learning from examples: Inductive
and Lazy methods”. In: Data & Knowledge Engineering 25.1-2 (1998), pp. 99–123. url: https:
//www.sciencedirect.com/science/article/pii/S0169023X97000530/pdf.

Deep learning. en. Page Version ID: 942561541. Feb. 2020. url: https://en.wikipedia.org/w/
index.php?title=Deep_learning&oldid=942561541 (visited on 02/28/2020).

Deeplearning4j. en. Page Version ID: 927846637. Nov. 2019. url: https://en.wikipedia.org/w/
index.php?title=Deeplearning4j&oldid=927846637 (visited on 02/29/2020).

deeplizard. Convolutional Neural Networks (CNNs) explained. Youtube. 2017. url: https://www.
youtube.com/watch?v=YRhxdVk{_}sIs.

Deng, Jia et al. “What does classifying more than 10,000 image categories tell us?” In: European
conference on computer vision. Springer. 2010, pp. 71–84. url: http://vision.stanford.edu/
pdf/DengBergLiFei-Fei{_}ECCV2010.pdf.

Epochs, Batch Size, & Iterations. Library Catalog: docs.paperspace.com. url: https://docs.papersp
ace.com/machine-learning/wiki/epoch (visited on 02/29/2020).

Expectation–maximization algorithm. en. Page Version ID: 936223068. Jan. 2020. url: https://en.
wikipedia.org/w/index.php?title=Expectation%E2%80%93maximization_algorithm&
oldid=936223068 (visited on 02/28/2020).

F1 score. en. Page Version ID: 938382811. Jan. 2020. url: https://en.wikipedia.org/w/index.
php?title=F1_score&oldid=938382811 (visited on 02/28/2020).

Fatahalian, Kayvon, Jeremy Sugerman, and Pat Hanrahan. “Understanding the efficiency of GPU
algorithms for matrix-matrix multiplication”. In: Proceedings of the ACM SIGGRAPH/EURO-
GRAPHICS conference on Graphics hardware. 2004, pp. 133–137. url: https://graphics.stanfo
rd.edu/papers/gpumatrixmult/gpumatrixmult.pdf.

Flickr images - Donut. de-de. Library Catalog: www.flickr.com. url: https://www.flickr.com/
search/?text=donut (visited on 03/01/2020).

Flowers Recognition. en. Library Catalog: www.kaggle.com. url: https://kaggle.com/alxmamaev/
flowers-recognition (visited on 02/29/2020).

Google images - Donut. url: https://www.google.de/search?q=donut&tbm=isch (visited on
03/01/2020).

43

https://www.ai-united.de/aktivierungsfunktionen-ihre-arten-und-verwendungsmoeglichkeiten/
https://www.ai-united.de/aktivierungsfunktionen-ihre-arten-und-verwendungsmoeglichkeiten/
https://en.wikipedia.org/w/index.php?title=Backpropagation&oldid=939314095
https://en.wikipedia.org/w/index.php?title=Backpropagation&oldid=939314095
https://www.aclweb.org/anthology/P01-1005.pdf
https://www.aclweb.org/anthology/P01-1005.pdf
https://www.bing.com/images/search?q=donut
http://deeplearning.lipingyang.org/wp-content/uploads/2016/12/Building-powerful-image-classification-models-using-very-little-data.pdf
http://deeplearning.lipingyang.org/wp-content/uploads/2016/12/Building-powerful-image-classification-models-using-very-little-data.pdf
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=940280604
https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=940280604
https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=942501792
https://en.wikipedia.org/w/index.php?title=Convolutional_neural_network&oldid=942501792
https://www.sciencedirect.com/science/article/pii/S0169023X97000530/pdf
https://www.sciencedirect.com/science/article/pii/S0169023X97000530/pdf
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=942561541
https://en.wikipedia.org/w/index.php?title=Deep_learning&oldid=942561541
https://en.wikipedia.org/w/index.php?title=Deeplearning4j&oldid=927846637
https://en.wikipedia.org/w/index.php?title=Deeplearning4j&oldid=927846637
https://www.youtube.com/watch?v=YRhxdVk{_}sIs
https://www.youtube.com/watch?v=YRhxdVk{_}sIs
http://vision.stanford.edu/pdf/DengBergLiFei-Fei{_}ECCV2010.pdf
http://vision.stanford.edu/pdf/DengBergLiFei-Fei{_}ECCV2010.pdf
https://docs.paperspace.com/machine-learning/wiki/epoch
https://docs.paperspace.com/machine-learning/wiki/epoch
https://en.wikipedia.org/w/index.php?title=Expectation%E2%80%93maximization_algorithm&oldid=936223068
https://en.wikipedia.org/w/index.php?title=Expectation%E2%80%93maximization_algorithm&oldid=936223068
https://en.wikipedia.org/w/index.php?title=Expectation%E2%80%93maximization_algorithm&oldid=936223068
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=938382811
https://en.wikipedia.org/w/index.php?title=F1_score&oldid=938382811
https://graphics.stanford.edu/papers/gpumatrixmult/gpumatrixmult.pdf
https://graphics.stanford.edu/papers/gpumatrixmult/gpumatrixmult.pdf
https://www.flickr.com/search/?text=donut
https://www.flickr.com/search/?text=donut
https://kaggle.com/alxmamaev/flowers-recognition
https://kaggle.com/alxmamaev/flowers-recognition
https://www.google.de/search?q=donut&tbm=isch

Géron, Aurélien. “Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte,
Tools und Techniken für intelligente Systeme”. In: O’Reilly Verlag, 2017. Chap. Konfusionsma-
trix, pp. 86–88. isbn: 9783960090618.

— “Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Tech-
niken für intelligente Systeme”. In: O’Reilly Verlag, 2017. Chap. Entscheidungsgrenzen, pp. 138–
140. isbn: 9783960090618.

— “Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Tech-
niken für intelligente Systeme”. In: O’Reilly Verlag, 2017. Chap. Data Augmentation, pp. 311–
312. isbn: 9783960090618.

— Praxiseinstieg Machine Learning mit Scikit-Learn und TensorFlow: Konzepte, Tools und Techniken für
intelligente Systeme. O’Reilly Verlag, 2017, pp. 8–14. isbn: 9783960090618.

Halevy, Alon, Peter Norvig, and Fernando Pereira. “The unreasonable effectiveness of data”. In:
IEEE Intelligent Systems 24.2 (2009), pp. 8–12. url: https://static.googleusercontent.com/
media/research.google.com/de//pubs/archive/35179.pdf.

Hempel, Björn. Keras Machine Learning Framework. original-date: 2019-09-12T21:51:11Z. Feb. 2020.
url: https://github.com/bjoern-hempel/keras-machine-learning-framework (visited on
02/29/2020).

— Keras Machine Learning Framework - Arguments of the training process. en. Library Catalog: github.com.
url: https://github.com/bjoern-hempel/keras-machine-learning-framework (visited on
02/29/2020).

— Keras Machine Learning Framework - GPU vs CPU. en. Library Catalog: github.com. url: https:
//github.com/bjoern-hempel/keras-machine-learning-framework (visited on 02/29/2020).

— Keras Machine Learning Framework (Java Sources). original-date: 2019-09-27T22:14:28Z. Oct. 2019.
url: https://github.com/bjoern-hempel/keras-machine-learning-framework-java-
sources (visited on 02/29/2020).

Hierarchical clustering. en. Page Version ID: 934548831. Jan. 2020. url: https://en.wikipedia.org/
w/index.php?title=Hierarchical_clustering&oldid=934548831 (visited on 02/28/2020).

ImageNet. en. Page Version ID: 929993952. Dec. 2019. url: https://en.wikipedia.org/w/index.
php?title=ImageNet&oldid=929993952 (visited on 02/28/2020).

k-means clustering. en. Page Version ID: 942500957. Feb. 2020. url: https://en.wikipedia.org/w/
index.php?title=K-means_clustering&oldid=942500957 (visited on 02/28/2020).

k-nearest neighbors algorithm. en. Page Version ID: 942113305. Feb. 2020.url: https://en.wikipedia.
org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=942113305 (visited on
02/28/2020).

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification with deep convo-
lutional neural networks”. In: Advances in neural information processing systems. 2012, pp. 1097–
1105. url: https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-
convolutional-neural-networks.pdf.

Least mean squares filter. en. Page Version ID: 941899198. Feb. 2020.url: https://en.wikipedia.org/
w/index.php?title=Least_mean_squares_filter&oldid=941899198 (visited on 02/25/2020).

Linear regression. en. Page Version ID: 935782381. Jan. 2020. url: https://en.wikipedia.org/w/
index.php?title=Linear_regression&oldid=935782381 (visited on 02/28/2020).

Logistic regression. en. Page Version ID: 941157282. Feb. 2020. url: https://en.wikipedia.org/w/
index.php?title=Logistic_regression&oldid=941157282 (visited on 02/28/2020).

Machine learning. en. Page Version ID: 942989288. Feb. 2020. url: https://en.wikipedia.org/w/
index.php?title=Machine_learning&oldid=942989288 (visited on 02/28/2020).

Osinga, Douwe. Deep Learning Kochbuch: Praxisrezepte für einen schnellen Einstieg. O’Reilly Verlag,
2019, pp. 19–26. isbn: 9783960090977.

Overfitting. en. Page Version ID: 942053730. Feb. 2020. url: https://en.wikipedia.org/w/index.
php?title=Overfitting&oldid=942053730 (visited on 02/25/2020).

44

https://static.googleusercontent.com/media/research.google.com/de//pubs/archive/35179.pdf
https://static.googleusercontent.com/media/research.google.com/de//pubs/archive/35179.pdf
https://github.com/bjoern-hempel/keras-machine-learning-framework
https://github.com/bjoern-hempel/keras-machine-learning-framework
https://github.com/bjoern-hempel/keras-machine-learning-framework
https://github.com/bjoern-hempel/keras-machine-learning-framework
https://github.com/bjoern-hempel/keras-machine-learning-framework-java-sources
https://github.com/bjoern-hempel/keras-machine-learning-framework-java-sources
https://en.wikipedia.org/w/index.php?title=Hierarchical_clustering&oldid=934548831
https://en.wikipedia.org/w/index.php?title=Hierarchical_clustering&oldid=934548831
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=929993952
https://en.wikipedia.org/w/index.php?title=ImageNet&oldid=929993952
https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=942500957
https://en.wikipedia.org/w/index.php?title=K-means_clustering&oldid=942500957
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=942113305
https://en.wikipedia.org/w/index.php?title=K-nearest_neighbors_algorithm&oldid=942113305
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://en.wikipedia.org/w/index.php?title=Least_mean_squares_filter&oldid=941899198
https://en.wikipedia.org/w/index.php?title=Least_mean_squares_filter&oldid=941899198
https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=935782381
https://en.wikipedia.org/w/index.php?title=Linear_regression&oldid=935782381
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=941157282
https://en.wikipedia.org/w/index.php?title=Logistic_regression&oldid=941157282
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=942989288
https://en.wikipedia.org/w/index.php?title=Machine_learning&oldid=942989288
https://en.wikipedia.org/w/index.php?title=Overfitting&oldid=942053730
https://en.wikipedia.org/w/index.php?title=Overfitting&oldid=942053730

Perceptron. en. Page Version ID: 942271496. Feb. 2020. url: https://en.wikipedia.org/w/index.
php?title=Perceptron&oldid=942271496 (visited on 02/25/2020).

Perez, Luis and Jason Wang. “The effectiveness of data augmentation in image classification using
deep learning”. In: arXiv preprint arXiv:1712.04621 (2017). url: https://arxiv.org/pdf/1712.
04621.pdf.

Precision and recall. en. Page Version ID: 943009117. Feb. 2020. url: https://en.wikipedia.org/w/
index.php?title=Precision_and_recall&oldid=943009117 (visited on 02/28/2020).

Radiuk, Pavlo M. “Impact of training set batch size on the performance of convolutional neural
networks for diverse datasets”. In: Information Technology and Management Science 20.1 (2017),
pp. 20–24. url: https://www.degruyter.com/downloadpdf/j/itms.2017.20.issue-1/itms-
2017-0003/itms-2017-0003.pdf.

Random forest. en. Page Version ID: 938369502. Jan. 2020. url: https://en.wikipedia.org/w/
index.php?title=Random_forest&oldid=938369502 (visited on 02/28/2020).

Reinforcement learning. en. Page Version ID: 939437819. Feb. 2020. url: https://en.wikipedia.
org/w/index.php?title=Reinforcement_learning&oldid=939437819 (visited on 02/28/2020).

Rosch, Eleanor et al. “Basic objects in natural categories”. In: Cognitive psychology: Key readings 448
(2004).

Sagar, Abhinav. Deep Learning for Image Classification with Less Data. en. Library Catalog: towards-
datascience.com. Nov. 2019. url: https://towardsdatascience.com/deep-learning-for-
image-classification-with-less-data-90e5df0a7b8e (visited on 02/25/2020).

Seif, George. Deep Learning for Image Recognition: why it’s challenging, where we’ve been, and what’s next.
en. Library Catalog: towardsdatascience.com. May 2019. url: https://towardsdatascience.
com/deep-learning-for-image-classification-why-its-challenging-where-we-ve-
been-and-what-s-next-93b56948fcef (visited on 02/28/2020).

Softmax function. en. Page Version ID: 928536872. Nov. 2019. url: https://en.wikipedia.org/w/
index.php?title=Softmax_function&oldid=928536872 (visited on 03/03/2020).

Sun, Yi, Xiaogang Wang, and Xiaoou Tang. “Deep learning face representation from predicting
10,000 classes”. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014,
pp. 1891–1898. url: https://www.cv-foundation.org/openaccess/content{_}cvpr{_
}2014/papers/Sun{_}Deep{_}Learning{_}Face{_}2014{_}CVPR{_}paper.pdf.

Support-vector machine. en. Page Version ID: 942477636. Feb. 2020. url: https://en.wikipedia.
org/w/index.php?title=Support-vector_machine&oldid=942477636 (visited on 02/28/2020).

Szeliski, Richard. “Computer Vision: Algorithms and Applications”. en. In: (), p. 979.

The Most Popular Language For Machine Learning Is ... (IT Best Kept Secret Is Optimization). en. CT904.
Library Catalog: www.ibm.com. Aug. 2015. url: www.ibm.com/developerworks/community/
blogs/jfp/entry/what_language_is_best_for_machine_learning_and_data_science
(visited on 02/25/2020).

Vapnik–Chervonenkis dimension. en. Page Version ID: 942482212. Feb. 2020. url: https://en.wikipe
dia.org/w/index.php?title=Vapnik%E2%80%93Chervonenkis_dimension&oldid=942482212
(visited on 02/25/2020).

Verlustfunktion (Statistik). de. Page Version ID: 177095272. May 2018. url: https://de.wikipedia.
org/w/index.php?title=Verlustfunktion_(Statistik)&oldid=177095272 (visited on
02/26/2020).

Warden, Pete. How many images do you need to train a neural network? en. Library Catalog: petewar-
den.com. Dec. 2017. url: https://petewarden.com/2017/12/14/how-many-images-do-you-
need-to-train-a-neural-network/ (visited on 02/25/2020).

45

https://en.wikipedia.org/w/index.php?title=Perceptron&oldid=942271496
https://en.wikipedia.org/w/index.php?title=Perceptron&oldid=942271496
https://arxiv.org/pdf/1712.04621.pdf
https://arxiv.org/pdf/1712.04621.pdf
https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=943009117
https://en.wikipedia.org/w/index.php?title=Precision_and_recall&oldid=943009117
https://www.degruyter.com/downloadpdf/j/itms.2017.20.issue-1/itms-2017-0003/itms-2017-0003.pdf
https://www.degruyter.com/downloadpdf/j/itms.2017.20.issue-1/itms-2017-0003/itms-2017-0003.pdf
https://en.wikipedia.org/w/index.php?title=Random_forest&oldid=938369502
https://en.wikipedia.org/w/index.php?title=Random_forest&oldid=938369502
https://en.wikipedia.org/w/index.php?title=Reinforcement_learning&oldid=939437819
https://en.wikipedia.org/w/index.php?title=Reinforcement_learning&oldid=939437819
https://towardsdatascience.com/deep-learning-for-image-classification-with-less-data-90e5df0a7b8e
https://towardsdatascience.com/deep-learning-for-image-classification-with-less-data-90e5df0a7b8e
https://towardsdatascience.com/deep-learning-for-image-classification-why-its-challenging-where-we-ve-been-and-what-s-next-93b56948fcef
https://towardsdatascience.com/deep-learning-for-image-classification-why-its-challenging-where-we-ve-been-and-what-s-next-93b56948fcef
https://towardsdatascience.com/deep-learning-for-image-classification-why-its-challenging-where-we-ve-been-and-what-s-next-93b56948fcef
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=928536872
https://en.wikipedia.org/w/index.php?title=Softmax_function&oldid=928536872
https://www.cv-foundation.org/openaccess/content{_}cvpr{_}2014/papers/Sun{_}Deep{_}Learning{_}Face{_}2014{_}CVPR{_}paper.pdf
https://www.cv-foundation.org/openaccess/content{_}cvpr{_}2014/papers/Sun{_}Deep{_}Learning{_}Face{_}2014{_}CVPR{_}paper.pdf
https://en.wikipedia.org/w/index.php?title=Support-vector_machine&oldid=942477636
https://en.wikipedia.org/w/index.php?title=Support-vector_machine&oldid=942477636
www.ibm.com/developerworks/community/blogs/jfp/entry/what_language_is_best_for_machine_learning_and_data_science
www.ibm.com/developerworks/community/blogs/jfp/entry/what_language_is_best_for_machine_learning_and_data_science
https://en.wikipedia.org/w/index.php?title=Vapnik%E2%80%93Chervonenkis_dimension&oldid=942482212
https://en.wikipedia.org/w/index.php?title=Vapnik%E2%80%93Chervonenkis_dimension&oldid=942482212
https://de.wikipedia.org/w/index.php?title=Verlustfunktion_(Statistik)&oldid=177095272
https://de.wikipedia.org/w/index.php?title=Verlustfunktion_(Statistik)&oldid=177095272
https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/
https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/

A Appendix

A.1 Performance comparison between GPU and CPU

Training device Time to load
the model

Training
time

Training
factor89

Time to save
the model

NVIDIA GeForce GTX 1060 6GB (Desktop) - Windows 10 17.5s 303.5s
00:05:03.5

1.00x 33.8s

NVIDIA GeForce GT 750M 2GB (Notebook) - Windows 10 18.4s 2415.0s
00:40:15.0

7.96x 29.8s

Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz (Single
Core) - MacOS

19.1s 6393.7s
01:46:33.7

21.07x 41.4s

Intel(R) Core(TM) i7-4712HQ CPU @ 2.30GHz (Single
Core) - Windows

16.9s 9016.8s
02:30:16.8

29.71x 28.7s

Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz (Single Core) -
Windows

16.3s 25183.4s
06:59:43.4

82.97x 28.3s

Table A.1: Performance comparison between GPU and CPU

A.2 Number of training and validation files

baked_beans

baked_salmon

beef_stew

beef_stroganoff

brownies

bundt_cake
burger

burrito

buttermilk_biscuits

caesar_salad
calzone

cheesecake

chicke
n_piccata

chicke
n_wings

cinnamon_roll

cobb_salad

coleslaw

corn_dog

creamed_spinach
donut

empanada

french_frie
s
fritt

ata

granola_bar

grille
d_cheese_sandwich

guacamole

ice_cream
kebabs

key_lim
e_pie

lasagne

macaroni_and_cheese

margarita
martin

i

mashed_potatoes

meatballs

meatloaf
muffin

nachos
omelet

pancakes
pizza

popcorn

quesadillasalad

sloppy_joe

smoothie soup

spaghetti

stuffed_pepper
waffles

0

50

100

150

200

250

300

350

Number of training files (blue) and validation files (orange).

Figure A.1: Number of training and validation files.

89Depending on the best result, which is marked with factor 1.00x

A1

A.3 Example of a dropout layer after the CNN model (Python code example)

1 # d e f i n i t i o n of some parameters
2 num_classes = 50
3 dim=299
4 dropout=0 . 5
5
6 # get the t r a n s f e r l earn ing model , add dropout and and build the f i n a l
7 # model
8 base_model = InceptionV3 (input_shape=(dim , dim , 3) , weights= ’ imagenet ’ ,
9 include_top=Fa lse)

10 x = base_model . output
11 x = GlobalAveragePooling2D () (x)
12 x = Dropout (dropout) (x)
13 p r e d i c t i o n s = Dense (num_classes , a c t i v a t i o n= ’ softmax ’) (x)
14 model = Model (inputs = base_model . input , outputs = p r e d i c t i o n s)

Listing A.1: Example of a dropout layer after the CNN model

A2

A.4 Principal component analysis of the food-50model

-3 -2 -1 0 1 2 3 4

-1

0

1

2

3

brownies

bundt_cake

buttermilk_biscuits

cheesecake

chicken_wings

cinnamon_roll

donut
granola_bar

guacamole

ice_cream

key_lime_pie

margarita

martini

mashed_potatoes

muffin

popcorn

sloppy_joe

smoothie

-0.4 -0.2 0.0 0.2 0.4 0.6

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

baked_beans

baked_salmon

beef_stew
beef_stroganoff

burger

burrito

caesar_salad

calzone

chicken_piccata

cobb_salad

coleslaw

corn_dog

creamed_spinach

empanada

french_fries

frittata

grilled_cheese_sandwich

guacamole

kebabs

lasagne

macaroni_and_cheese

meatballs

meatloaf

nachos

omelet

pancakes

pizza

popcorn

quesadilla

salad

sloppy_joe

soup

spaghetti

stuffed_pepper

waffles

Figure A.2: Principal component analysis of the food-50 model. The x and y axis stand for the
space and the similarity between the classes.
.

A3

A.5 Visualised representation of grouped classes with k-means

-3 -2 -1 0 1 2 3 4

-1

0

1

2

3

brownies

bundt_cake

buttermilk_biscuits

cheesecake

chicken_wings

cinnamon_roll

cobb_salad
coleslaw

creamed_spinach

donut
granola_bar

guacamole

ice_cream

key_lime_pie

margarita

martini

mashed_potatoes

muffin

pancakes
popcorn

salad
sloppy_joe

smoothie

stuffed_pepper

Figure A.3: Grouped classes with k-means

A.6 Model accuracy of grouped classes with k-means

Group #classes # f ilesval
ratio f ilesval acc* âcc* Classes

preclassification 8 2,953 100.0% 90.02%
@ ep. 15

group0, group1, group2, group3, group4, group5, group6,
group7

group0 18 919 31.1% 83.94%
@ ep. 11

75.56% baked_salmon, calzone, chicken_piccata,
corn_dog, empanada, french_fries, frittata,
grilled_cheese_sandwich, kebabs, lasagne, meatloaf,
omelet, pancakes, pizza, popcorn, stuffed_pepper,
waffles

group1 2 158 5.4% 99.30%
@ ep. 10

89.39% margarita, smoothie

group2 5 296 10.0% 93.93%
@ ep. 16

84.56% bundt_cake, buttermilk_biscuits, cheesecake,
granola_bar, muffin

group3 1 83 2,8% 100.0% 90.02% brownies

group4 1 63 2,1% 100.0% 90.02% martini

group5 4 221 7.5% 92.68%
@ ep. 17

83.43% cinnamon_roll, donut, ice_cream, key_lime_pie

group6 12 723 24.5% 81.90%
@ ep. 10

73.73% baked_beans, beef_stew, beef_stroganoff,
caesar_salad, cobb_salad, coleslaw, creamed_spinach,
guacamole, macaroni_and_cheese, mashed_potatoes,
nachos, salad, soup

group7 7 490 16.6% 91.77%
@ ep. 14

82.61% burger, burrito, chicken_wings, meatballs,
quesadilla, sloppy_joe, spaghetti

Overall 50 2,953 100,0% acctop−1 = 79.23%

Table A.2: Grouped classes with k-means. *=All accuracies acc are top-1 accuracies.

A4

A.7 Visualised representation of grouped classes with agglomerative hierar-
chical clustering

-3 -2 -1 0 1 2 3 4

-1

0

1

2

3

brownies

bundt_cake

buttermilk_biscuits

cheesecake

chicken_wings

cinnamon_roll

cobb_salad
coleslaw

creamed_spinach

donut
granola_bar

guacamole

ice_cream

key_lime_pie

margarita

martini

mashed_potatoes

muffin

pancakes
popcorn

salad
sloppy_joe

smoothie

stuffed_pepper

Figure A.4: Grouped classes with agglomerative hierarchical clustering

A.8 Model accuracy of grouped classes with agglomerative hierarchical clus-
tering

Group #classes # f ilesval
ratio f ilesval acc* âcc* Classes

preclassification 8 2,953 100.0% 88.93%
@ ep. 14

group0, group1, group2, group3, group4, group5, group6,
group7

group0 22 1,267 42.91% 84.17%
@ ep. 18

74.85% baked_beans, beef_stew, beef_stroganoff,
burger, burrito, caesar_salad, chicken_piccata,
chicken_wings, cobb_salad, coleslaw,
creamed_spinach, french_fries, frittata, kebabs,
macaroni_and_cheese, meatballs, nachos, quesadilla,
salad, sloppy_joe, soup, spaghetti

group1 5 296 10.02% 93.21%
@ ep. 16

82.89% bundt_cake, buttermilk_biscuits, cheesecake,
granola_bar, muffin

group2 4 249 8.43% 94.85%
@ ep. 11

84.35% guacamole, ice_cream, mashed_potatoes, popcorn

group3 1 63 2.13% 100.0% 88.93% martini

group4 2 158 5.35% 99.30%
@ ep. 10

88.31% margarita, smoothie

group5 12 677 22.93% 85.63%
@ ep. 11

76.15% baked_salmon, calzone, corn_dog, empanada,
grilled_cheese_sandwich, lasagne, meatloaf, omelet,
pancakes, pizza, stuffed_pepper, waffles

group6 3 160 5.42% 93.13%
@ ep. 5

82.82% cinnamon_roll, donut, key_lime_pie

group7 1 83 2.81% 100.0% 88.93% brownies

Overall 50 2,953 100,0% acctop−1 = 78.60%

Table A.3: Grouped classes with agglomerative hierarchical clustering. *=All accuracies acc are
top-1 accuracies.

A5

A.9 Model accuracy of binary classification

Training Validation

Class Best
epoch

Acc.
top-1

Loss nr. files
positive

nr. files
negative

Acc.
top-1

Loss nr. files
positive

nr. files
negative

baked_beans 3 99.55% 0.0117 167 11.746 99.66% 0.0138 41 2.912
baked_salmon 1 99.12% 0.0390 65 11.848 99.76% 0.0170 16 2.937
beef_stew 2 98.71% 0.0339 300 11.613 99.11% 0.0339 74 2.879
beef_stroganoff 2 99.38% 0.0151 98 11.815 99.80% 0.0069 24 2.929
brownies 4 99.82% 0.0053 334 11.579 99.22% 0.0261 83 2.870
bundt_cake 2 99.42% 0.0175 307 11.606 99.56% 0.0172 76 2.877
burger 6 99.97% 0.0013 286 11.627 99.69% 0.0178 71 2.882
burrito 4 99.89% 0.0039 268 11.645 99.46% 0.0223 67 2.886
buttermilk_biscuits 1 99.19% 0.0294 53 11.860 99.86% 0.0098 13 2.940
caesar_salad 2 99.28% 0.0216 185 11.728 99.11% 0.0322 46 2.907
calzone 2 99.08% 0.0226 126 11.787 99.42% 0.0154 31 2.922
cheesecake 2 98.74% 0.0334 318 11.595 98.84% 0.0363 79 2.874
chicken_piccata 1 99.24% 0.0311 49 11.864 99.90% 0.0088 12 2.941
chicken_wings 5 99.87% 0.0043 359 11.554 99.22% 0.0246 89 2.864
cinnamon_roll 3 99.77% 0.0075 304 11.609 99.32% 0.0284 76 2.877
cobb_salad 2 99.36% 0.0172 89 11.824 99.69% 0.0124 22 2.931
coleslaw 2 99.05% 0.0278 301 11.612 99.28% 0.0199 75 2.878
corn_dog 1 99.32% 0.0236 40 11.873 99.97% 0.0066 10 2.943
creamed_spinach 1 99.20% 0.0310 52 11.861 99.90% 0.0083 12 2.941
donut 3 99.77% 0.0070 278 11.635 99.49% 0.0213 69 2.884
empanada 2 99.13% 0.0222 116 11.797 99.63% 0.0127 29 2.924
french_fries 1 99.34% 0.0257 36 11.877 100.00% 0.0032 8 2.945
frittata 5 99.70% 0.0080 344 11.569 98.43% 0.0760 85 2.868
granola_bar 2 99.30% 0.0189 199 11.714 99.28% 0.0195 49 2.904
grilled_cheese_sandwich 5 99.76% 0.0070 390 11.523 99.05% 0.0374 97 2.856
guacamole 6 99.92% 0.0034 232 11.681 99.52% 0.0183 57 2.896
ice_cream 6 99.96% 0.0016 245 11.668 99.22% 0.0421 61 2.892
kebabs 3 99.79% 0.0074 305 11.608 99.11% 0.0385 76 2.877
key_lime_pie 1 99.13% 0.0355 63 11.850 99.80% 0.0109 15 2.938
lasagne 5 99.82% 0.0067 301 11.612 99.01% 0.0385 75 2.878
macaroni_and_cheese 2 99.00% 0.0281 259 11.654 99.25% 0.0256 64 2.889
margarita 5 99.92% 0.0030 305 11.608 99.32% 0.0179 76 2.877
martini 2 99.50% 0.0139 252 11.661 99.66% 0.0100 63 2.890
mashed_potatoes 2 99.29% 0.0210 284 11.629 99.15% 0.0290 70 2.883
meatballs 3 99.26% 0.0209 339 11.574 98.81% 0.0410 84 2.869
meatloaf 3 99.65% 0.0105 285 11.628 99.35% 0.0301 71 2.882
muffin 3 99.72% 0.0095 320 11.593 98.98% 0.0430 79 2.874
nachos 3 99.26% 0.0213 238 11.675 98.98% 0.0386 59 2.894
omelet 3 99.14% 0.0256 288 11.625 98.50% 0.0608 71 2.882
pancakes 3 99.75% 0.0080 312 11.601 99.42% 0.0214 78 2.875
pizza 4 99.77% 0.0076 269 11.644 98.74% 0.0575 67 2.886
popcorn 3 99.78% 0.0062 246 11.667 99.66% 0.0096 61 2.892
quesadilla 5 99.82% 0.0047 321 11.592 99.32% 0.0342 80 2.873
salad 6 99.83% 0.0064 358 11.555 98.47% 0.0721 89 2.864
sloppy_joe 6 99.95% 0.0012 172 11.741 99.76% 0.0160 43 2.910
smoothie 3 99.77% 0.0067 332 11.581 99.73% 0.0083 82 2.871
soup 5 99.70% 0.0088 362 11.551 98.50% 0.0625 90 2.863
spaghetti 2 99.30% 0.0183 226 11.687 99.25% 0.0212 56 2.897
stuffed_pepper 3 99.87% 0.0053 180 11.733 99.80% 0.0067 44 2.909
waffles 4 99.92% 0.0033 355 11.558 99.73% 0.0172 88 2.865

Table A.4: Overview of binary classification

A6

Acknowledgement

The hardest part for me is this acknowledgment. Because it doesn’t make any difference to me who
comes first or last. Each person has done his or her part and is equally important for this thesis
and me. Nevertheless I try: At this point I would like to thank all the people who have helped me
to make this thesis a success. First and foremost: Prof. Dr. Karl Heinz Hoffmann, who encouraged
me to resume my studies after I had broken off my studies more than 15 years ago and to catch
up on my degree. In second place Dr. David Urbansky from the semknox company, a great expert
in the field of sentiment analysis and classifications of all kinds of things. He was the one who
accompanied me skin to skin the whole time and supported me with helpful tips and ideas. In third
place Prof. Dr. Angela Thränhardt Professor for "Theoretical Physics - Simulation of New Materials"
at the Chemnitz University of Technology, which enabled me to tackle a somewhat unrelated area
in this work. In fourth place was my family, who was permanently at my side and supported me
with this topic. And last but not least: Thanks to all the people who helped me with corrections and
hints for this thesis (even if they were already mentioned). I would like to mention the following
persons:

Prof. Dr. Angela Thränhardt with the scientific claim and more than 100 written english pub-
lications. Revising her comments was the most difficult part for me. I thank her for the way of
expression and the claim to describe things scientifically. Sentences are only sentences if they consist
of subject and predicate ;)

Dr. David Urbansky from semknox. With his experience in this field in general. A lot of his
ideas are based on the fact that papers have to deliver a demanding and interesting content. Many
ideas and content suggestions would not have been possible without him.

Dr. Christoph Sohrmann from the Fraunhofer Institute. With his experience in writing papers.
Many of his ideas are based on the fact that paper has to meet certain expectations in order to be
respected in science.

Isabel Benkert from ressourcenmangel. With her experience in english texts and an eye for the
form and appearance of this thesis. I thank her for the little things that I would never have seen
myself. English texts are very different from german texts. ;)

Nadine Sander from ressourcemangel, with her experience for pragmatism and an eye for things
that only make sense if they serve a purpose. I thank her for all english corrections and all hints
about the topic “How thesis are seen by others.”

Declaration

I hereby declare that the work presented in this thesis is solely my work and that to the best of my
knowledge this work is original, except where indicated by references to other authors. No part of
this work has been submitted for any other degree or diploma.

Place, Date: Signature:

	Introduction
	Insufficient amount of data

	Background
	Image classification
	Deductive approach
	Inductive approach
	Balanced training data set
	Training, validation and test data set

	Classification metrics and confusion matrix
	Loss function
	Confusion matrix
	Accuracy
	Other metrics

	Machine learning
	Short definitions
	Backpropagation
	Overfitting und underfitting
	Batch size
	Class
	Data augmentation
	Dropout
	Learning epoch
	Learning rate

	Methods of machine learning
	Supervised learning
	Unsupervised learning

	Artificial neural network
	Convolutional neural network
	Transfer learning
	Overview of current and known convolutional neural networks

	Related work
	Considerations and implemention
	Research questions and hypothesis section
	Working environment and model creation
	Performance
	Experimental Setup
	Software specification
	Used data set
	Default setup

	Results
	Model validation
	Influence of number of trained images on accuracy
	Comparison of different cnn models
	Use of the transfer learning (TL) approach
	Influence of the number of trained layers on the accuracy
	Influence of different error optimizers
	Comparison optimizer
	Influence of the momentum and the Nesterov momentum
	Influence of a dynamic learning rate on accuracy (scheduling)

	Different batch sizes
	Different activation functions
	Different number of learned epochs
	Influence of dropout

	Optimization process
	Comparison of different neural network types
	Data augmentation
	Hierarchical classification
	k-means clustering
	Agglomerative hierarchical clustering
	Conclusion of the hierarchical classification

	Binary classifiers

	Summary and outlook
	List of acronyms
	List of literature
	Appendix
	Performance comparison between gpu and cpu
	Number of training and validation files
	Example of a dropout layer after the cnn model (Python code example)
	Principal component analysis of the food-50 model
	Visualised representation of grouped classes with k-means
	Model accuracy of grouped classes with k-means
	Visualised representation of grouped classes with agglomerative hierarchical clustering
	Model accuracy of grouped classes with agglomerative hierarchical clustering
	Model accuracy of binary classification

